Impact of Pyrolysis Temperature and Jatropha Seed Adhesive on the Properties of Bio-charcoal from Young Coconut Waste

Authors

  • Khairul Anwar Universitas Syiah Kuala
  • Mahidin Mahidin Universitas Syiah Kuala
  • Ichwana Ramli Universitas Syiah Kuala
  • Muhammad Faisal Universitas Syiah Kuala
  • Agustami Sitorus National Research and Innovation Agency (BRIN)

DOI:

https://doi.org/10.23960/jtep-l.v13i4.1372-1382

Abstract

This study assesses the characteristics of bio-charcoal from young coconut waste with the effect of variations in pyrolysis temperature and the addition of Jatropha seed adhesive. The physical and chemical parameters of bio- charcoal from three temperature variation treatments (380°C, 430°C, and 480°C) and three adhesive concentrations (15%, 20%, and 25%) were analyzed, including moisture content, ash content, volatile matter, calorific value and fixed carbon. In addition, the application of ANOVA and DMRT were used to evaluate the significant differences between the various treatments with significant p-value 5%. The optimal result was obtained at temperature of 430°C and 25% adhesive indicating a calorific value of 6421 cal/g, moisture content of 6.1%, ash content of 7.6% volatile matter of 7.7% and fixed carbon of 78.7%. The findings reveal that adhesive content significantly affects bio-charcoal quality, while temperature variations influence moisture content and heating value. This study concludes that optimizing temperature and adhesive concentrations can yield high-quality bio-charcoal, offering a cleaner, sustainable source.

 

Keywords: Adhesive, DMRT, Jatropha curcas, Pyrolysis, Young coconut waste.

Author Biographies

  • Khairul Anwar, Universitas Syiah Kuala
    Master of Chemical Engineering, Faculty of Engineering
  • Mahidin Mahidin, Universitas Syiah Kuala
    Department of Chemical Engineering, Faculty of Engineering
  • Ichwana Ramli, Universitas Syiah Kuala
    Department of Agriculture Engineering, Faculty of Agriculture
  • Muhammad Faisal, Universitas Syiah Kuala
    Department of Chemical Engineering, Faculty of Engineering
  • Agustami Sitorus, National Research and Innovation Agency (BRIN)
    Research Center for Artificial Intelligence and Cyber Security

References

Abdel Aal, A.M.K., Ibrahim, O.H.M., Al-Farga, A., & El Saeidy, E.A. (2023). Impact of biomass moisture content on the physical properties of briquettes produced from recycled Ficus nitida pruning residuals. Sustainability (Switzerland), 15(15). https://doi.org/10.3390/su151511762

Ajimotokan, H.A., Ehindero, A.O., Ajao, K.S., Adeleke, A.A., Ikubanni, P.P., & Shuaib-Babata, Y.L. (2019). Combustion characteristics of fuel briquettes made from charcoal particles and sawdust agglomerates. Scientific African, 6. https://doi.org/10.1016/j.sciaf.2019.e00202

Aljarwi, M.A., Pangga, D., & Ahzan, S. (2020). Uji laju pembakaran dan nilai kalor briket wafer sekam padi dengan variasi tekanan. ORBITA: Jurnal Kajian Inovasi dan Aplikasi Pendidikan Fisika, 6(2). https://doi.org/10.31764/orbita.v6i2.2645

Anizar, H., Sribudiani, E., & Somadona, S. (2020). Pengaruh bahan perekat tapioka dan sagu terhadap kualitas briket arang kulit buah nipah. Perennial, 16(1), 11–17.

Arous, S., Koubaa, A., Bouafif, H., Bouslimi, B., Braghiroli, F.L., & Bradai, C. (2021). Effect of pyrolysis temperature and wood species on the properties of biochar pellets. Energies, 14(20). https://doi.org/10.3390/en14206529

Bani, O., Iriany, Taslim, Sari, N., & Carnella, C. (2018). Biobriquette production from palm fronds and shells: Effect of material composition and particle size. Jurnal Teknik Kimia USU, 7(1). https://doi.org/10.32734/jtk.v7i1.1632

Cheng, C., Guo, Q., Ding, L., Raheem, A., He, Q., Shiung Lam, S., & Yu, G. (2022). Upgradation of coconut waste shell to value-added hydrochar via hydrothermal carbonization: Parametric optimization using response surface methodology. Applied Energy, 327(October), 120136. https://doi.org/10.1016/j.apenergy.2022.120136

Daowwiangkan, S., Thiangchanta, S., Khiewwijit, R., Suttakul, P., & Mona, Y. (2023). Investigation of the physical properties and environmental impact of lemongrass biobriquettes. Energy Reports, 9, 439–444. https://doi.org/10.1016/j.egyr.2023.09.005

Dewita, A., Faisal, M., & Gani, A. (2020). Physical characteristics of briquettes made of oil palm empty fruit bunches (EFB) using brown algae adhesive. Jurnal Rekayasa Kimia & Lingkungan, 15(1), 38–44. https://doi.org/10.23955/rkl.v15i1.15429

Loppies, J.E. (2016). Karakteristik arang kulit buah kakao yang dihasilkan dari berbagai kondisi pirolisis. Jurnal Riset Industri, 11(2), 105-111.

Faisal, M., Gani, A., Mulana, F., Desvita, H., & Kamaruzzaman, S. (2020). Effects of pyrolysis temperature on the composition of liquid smoke derived from oil palm empty fruit bunches. Rasayan Journal of Chemistry, 13(1), 514–520. https://doi.org/10.31788/RJC.2020.1315507

Ginting, Z., Faisal, F., Bahri, S., Zulnazri, Z., Sulhatun, S., & Pujana, M.P. (2023). Pemanfaatan produk samping dari proses pirolisis pada limbah padat hasil penyulingan minyak nilam untuk pembuatan briket bioarang. Jurnal Teknologi Kimia Unimal, 12(1), 112. https://doi.org/10.29103/jtku.v12i1.11672

Gómez, N., Banks, S.W., Nowakowski, D.J., Rosas, J.G., Cara, J., Sánchez, M.E., & Bridgwater, A.V. (2018). Effect of temperature on product performance of a high ash biomass during fast pyrolysis and its bio-oil storage evaluation. Fuel Processing Technology, 172, 97–105. https://doi.org/10.1016/j.fuproc.2017.11.021

Hamzah, F., Fajri, A., Harun, N., & Pramana, A. (2023). Characterization of charcoal briquettes made from rubber rods and coconut shells with tapioca as an adhesive. IOP Conference Series: Earth and Environmental Science, 1182(1). https://doi.org/10.1088/1755-1315/1182/1/012071

Ige, A.R., Adegoke, I.A., Abayomi, B., Moki, E.C., Ogala, H., & Ayobami, I.V. (2022). Effect of pyrolysis temperature on the physicochemical and combustion properties of desert date (Balanite Aegyptiaca) bio-char briquette. Journal of Solid Waste Technology and Management, 48(2), 174–181. https://doi.org/10.5276/JSWTM/2022.174

Kazimierski, P., Januszewicz, K., Godlewski, W., Fijuk, A., Suchocki, T., Chaja, P., Barczak, B., & KardaÅ›, D. (2022). The Course and the effects of agricultural biomass pyrolysis in the production of highâ€calorific biochar. Materials, 15(3). https://doi.org/10.3390/ma15031038

Kongprasert, N., Wangphanich, P., & Jutilarptavorn, A. (2019). Charcoal briquettes from Madan wood waste as an alternative energy in Thailand. Procedia Manufacturing, 30, 128–135. https://doi.org/10.1016/j.promfg.2019.02.019

Lestari, D., Mulder, W.J., & Sanders, J.P.M. (2011). Jatropha seed protein functional properties for technical applications. Biochemical Engineering Journal, 53(3), 297–304. https://doi.org/10.1016/j.bej.2010.12.003

Norhikmah, Sari, N.M., & Mahdie, M.F. (2021). Pengaruh persentase perekat tapioka terhadap karakteristik briket arang tempurung kelapa. Jurnal Sylva Scienteae, 4(2).

Miroshnichenko, D.V., & Malik, I.K. (2023). Determination of the calorific value of plant material and charcoal. Journal of Coal Chemistry, 2, 31–48. https://doi.org/10.31081/1681-309x-2023-0-2-31-48

Murni, S.W., & Setyoningrum, T.M. (2020). The effect of pyrolysis temperature on charcoal briquettes from biomass waste. Yogyakarta Conference Series Proceeding on Engineering and Science Series (ESS), 1(1), 453–460.

Sabo, M.N., Aji, M.M., Yaumi, A.L., & Mustafa, B.G. (2022). Preparation and characterization of biomass briquettes produced from coconut shell and corncobs. Arid-Zone Journal of Basic & Applied Research, 1(1), 47–54. https://doi.org/10.55639/607enw

Downloads

Published

2024-12-12