Performance Comparison of Two Portable Near-infrared Devices for Rapid Authentication of Aceh Aromatic Rice Sigupai

Authors

  • Slamet Widodo IPB University
  • Masyitah Masyitah National Land Agency Aceh Jaya, Mahkota Ratu Street, Kuala Meurisi, Calang, Aceh Jaya, Aceh, 23654 Indonesia
  • Yohanes Aris Purwanto IPB University
  • Akeme Cyril Njume The United Graduate School of Agricultural Sciences, Kagoshima University, 890-0065, Japan ⁠Faculty of Agriculture, University of the Ryukyus, Okinawa, 903-0213, Japan

DOI:

https://doi.org/10.23960/jtep-l.v13i3.851-862

Abstract

Sigupai rice, Indonesia local aromatic rice varieties grown in South-West region of Aceh, is highly valued for its fragrance and quality, making it susceptible to adulteration. This study compares the performance of two portable Near-infrared (NIR) devices, SCiO and NeoSpectra, for rapid authentication of Sigupai rice. We evaluated 86 samples for qualitative analysis (i.e. authentic vs adulterated rice) and 44 samples for quantitative analysis (i.e. the level of adulteration). For the qualitative analysis using partial least squares-discriminant analysis (PLS-DA), the best estimation model could differentiate authentic and adulterated samples with an accuracy, sensitivity, specificity, and false positive rates of 89.29%, 92.86%, 85.71% and 14.29% for the NeoSpectra and 97.44%, 100%, 94.87%, and 5.13% for the SCiO, respectively at the validation stage. For quantitative analysis using partial least squares-regression (PLS-R), the best estimation model could estimate the level of adulteration with a coefficient of determination (R2), RMSEP, RPD, and consistency values of 0.92, 1.50%, 5.93 and 100.69% for the NeoSpectra and 0.96, 1.31%, 6.83 and 104.78% for the SCiO. Both portable NIR devices could be used as a rapid analysis tool for the authenticity of Sigupai rice with high accuracy. However, in this study the SCiO device showed a better performance.

 

Keywords: Portable NIR device, Authentication, Aromatic rice, Rapid analysis, Sigupai variety.

Author Biographies

  • Slamet Widodo, IPB University
    Department of Mechanical and Biosystem Engineering, Faculty of Agricultural Engineering and Technology
  • Yohanes Aris Purwanto, IPB University
    Department of Mechanical and Biosystem Engineering, Faculty of Agricultural Engineering and Technology

References

Aznan A., Viejo, C.G., Pang, A., & Fuentes, S. (2022). Rapid Detection of Fraudulent Rice Using Low-Cost Digital Sensing Devices and Machine Learning. Sensors, 22(22), 8655. https://doi.org/10.3390/s22228655

Bakhtiar., Kesumawati, E., Hidayat, T., & Rahmawati, M. (2011). Characterization of Aceh rice germplasm for developing adapted variety in acid soils. Journal Agrista, 15(3), 79–86.

Borghi, F.T., Santos, P.C., Santos, F.D., Nascimento, M.H.C., Corrêa, T., Cesconetto, M., Pires, A.A., Ribeiro, A.V.F.N., Lacerda, Jr.V., Romão, W., & Filgueiras, P.R. (2020). Quantification and classification of vegetable oils in extra virgin olive oil samples using a portable near-infrared spectrometer associated with chemometrics. Microchemical Journal, 159, 105544. https://doi.org/10.1016/j.microc.2020.105544

Burestan, N.F., Sayyah, A.H.A., & Taghinezhad, E. (2021). Prediction of some quality properties of rice and its flour by near-infrared spectroscopy (NIRS) analysis. Food Science & Nutrition, 9(2), 1099–1105. https://doi.org/10.1002/fsn3.2086

Chairunnisak., Sugiyanta., & Santosa. E. (2021). Pengaruh nitrogen terhadap kualitas beras aromatik. Jurnal Agronida, 7(1), 1-8. https://doi.org/10.30997/jag.v7i1.4064

Chen, J.Y., Miao, Y., Sato, S., & Zhang, H. (2008). Near-infrared spectroscopy for determination of the protein composition of rice flour. Food Science Technology Research, 14(2), 132–138. https://doi.org/10.3136/fstr.14.132

Chen, H., Tan, C., & Lin, Z. (2018). Authenticity detection of black rice by near-infrared spectroscopy and support vector data description. International Journal of Analytical Chemistry, 2018, 1–8. https://doi.org/10.1155/2018/8032831

Deski, P.A.S., Bakhtiar, B., Jaya, R., Sari, W.E., Zuyasna, Z., & Zakaria, S. (2023). Phenotypic performance of F3 progenies from crossbreeding of Sigupai and IRBB27. IOP Conference Series: Earth and Environmental Science, 1183, 012102. https://doi.org/10.1088/1755-1315/1183/1/012102

Doan, D.L.N., Nguyen, Q.C., Marini, F., & Biancolillo, A. (2021). Authentication of rice (Oryza sativa L.) using near-infrared spectroscopy combined with different chemometric classification strategies. Applied Sciences. 11(1), 362. https://doi.org/10.3390/app11010362

Edris, M., Ghasemi-Varnamkhasti, M., Kiani, S., Yazdanpanah, H., & Izadi, Z. (2024). Identifying the authenticity and geographical origin of rice by analyzing hyperspectral images using unsupervised clustering algorithms. Journal of Food Composition and Analysis, 125, 105737, https://doi.org/10.1016/j.jfca.2023.105737

Folli, G.S., Santos, L.P., Santos, F.D., Cunha, P.H.P., Schaffel, I.F., Borghi, F.T., Barros, I.H.A.S., Pires, A.A., Ribeiro, A.V.F.N., Romão, W., & Filgueiras, P.R. (2022). Food analysis by portable NIR spectrometer. Food Chemistry Advances, 1, 100074. https://doi.org/10.1016/j.focha.2022.100074

Fordellone, M., Bellincontro, A., & Mencarelli, F. (2019). Partial least squares discriminant analysis: a dimensionality reduction method to classify hyperspectral data. Statistica Applicata - Italian Journal of Applied Statistics, 31(2), 181–200.

Guo, Z., Huang, W., Peng, Y., Chen, Q., Ouyang, Q., & Zhao, J. (2016). Color compensation and comparison of shortwave near-infrared and long wave near-infrared spectroscopy for determination of soluble solids content of ‘Fuji’ apple. Postharvest Biology and Technology, 115, 81-90, https://doi.org/10.1016/j.postharvbio.2015.12.027

Gusmelly, R., Rahmawati, M., Hidayat, T., Oktarina, H., & Zakaria, S. (2024). Agronomic character and productivity of improved Acehnese rice lines under upland cultivation system. IOP Conference Series: Earth and Environmental Science, 1297, 012049. https://doi.org/10.1088/1755-1315/1297/1/012049

Hayati, R., & Efendi. (2021). Chemical and sensory properties of local Aceh rice (Oryza sativa L.) M4 mutant resulting from Gamma-ray irradiation. IOP Conference Series: Earth and Environmental Science, 644, 012007. https://doi.org/10.1088/1755-1315/644/1/012007

Jalil, M., Basyah, B., Idris, E., Sari, M., & Zakaria, S. (2022). Analysis the agronomic character and inheritance of fragrant genes in F2 progenies of Sigupai and Yinzhan. IOP Conference Series: Earth and Environmental Science, 951, 012074. https://doi.org/10.1088/1755-1315/951/1/012074

Kim, S.S., Rhyu, M.R., Kim, J.M., & Lee, S.H. (2003). Authentication of rice using near-infrared reflectance spectroscopy. Cereal Chemistry, 80(3), 346-349. https://doi.org/10.1094/CCHEM.2003.80.3.346

Lee, L.C., Liong, C.Y., & Jemain, A.A. (2018). Partial least squares-discriminant analysis (PLS-DA) for classification of high-dimensional (HD) data: a review of contemporary practice strategies and knowledge gaps. Analyst, 143(15), 3526-3539. https://doi.org/10.1039/c8an00599k

Liu, M.B., Li, X.L, Liu, Y., Huang, J.F., & Tang ,Y.L. (2014). Detection of crude protein, crude starch, and amylose for rice by hyperspectral reflectance. Spectroscopy Letters, 47(2), 101–106. https://doi.org/10.1080/00387010.2013.779283

Liu W, Xu X, Liu C, & Zheng L. (2021). Nondestructive Detection of Authenticity of Thai Jasmine Rice Using Multispectral Imaging. Journal of Food Quality, 2021(1), 6642220. https://doi.org/10.1155/2021/6642220

Liu, Y., Li, Y., Peng, Y., Yang, Y., & Wang, Q. (2020). Detection of fraud in high-quality rice by near-infrared spectroscopy. Journal of Food Science, 85(9), 2773-2782. https://doi.org/10.1111/1750-3841.15314

Njume, A.C., Purwanto, Y.A., Astuti, D.A., & Widodo, S. (2021). Rapid assessment of fresh beef spoilage using portable near-infrared spectroscopy. Jurnal Keteknikan Pertanian, 9(3), 79-86. https://doi.org/10.19028/jtep.09.3.79-86

Osborne, B.G. (2006). Application of near-infrared spectroscopy in quality screening of early-generation material in cereal breeding programs. Journal of Near Infrared Spectroscopy, 14(2), 93–101. https://doi.org/10.1255/jnirs.595

Parastar, H., van Kollenburg, G., Weesepoel, Y., van den Doel, A., Buydens, L., & Jansen, J. (2020). Integration of handheld NIR and machine learning to “Measure and Monitor†chicken meat authenticity. Food Control, 112, 107149. https://doi.org/10.1016/j.foodcont.2020.107149

Rakhmawati, A., Purwanto, Y.A., Widodo, S., & Astuti, D.A. (2023). Detection of formalin content in chicken meat using portable near-infrared spectrometer. Jurnal Teknik Pertanian Lampung, 12(4), 831-839. http://dx.doi.org/10.23960/jtep-l.v12i4.831-839

Sagita, D., Mardjan, S.S., Suparlan., Purwandoko, P.B., & Widodo, S. (2024). Low-cost IoT-based multichannel spectral acquisition systems for roasted coffee beans evaluation: case study of roasting degree classification using machine learning. Journal of Food Composition and Analysis, 133, 106478, https://doi.org/10.1016/j.jfca.2024.106478

Sampaio, P.S., Soares, A., Castanho, A., Almeida, A.S., Oliveira, J., & Brites, C. (2018). Optimization of rice amylose determination by NIR spectroscopy using PLS chemometrics algorithms. Food Chemistry, 242, 196-204. http://dx.doi.org/10.1016/j.foodchem.2017.09.058

Sattari A, Mahdinezhad N, Fakheri B, Noorozi M, & Baheshtizadeh H. (2015). Improvement of the eating and cooking qualities of rice: A review. International Journal of Farming and Allied Sciences, 4(2), 153-160.

Shinzawa H, & Mizukado J. (2018). Hydrogen/deuterium (H/D) exchange of gelatinized starch studied by two-dimensional (2D) near-infrared (NIR) correlation spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 197, 138-141, https://doi.org/10.1016/j.saa.2017.12.065

Tamura M, Singh J, Kaur L, Ogawa Y. (2016). Impact of structural characteristics on starch digestibility of cooked rice. Food Chemistry, 191, 91-97. https://doi.org/10.1016/j.foodchem.2015.04.019

Teye, E., Amuah, C. L. Y., McGrath, T., & Elliott, C. (2019). Innovative and rapid analysis for rice authenticity using hand-held NIR spectrometry and chemometrics. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 217, 147–154. https://doi.org/10.1016/j.saa.2019.03.085

Teye E & Amuah CLY. (2022). Rice varietal integrity and adulteration fraud detection by chemometrical analysis of pocket-sized NIR spectra data. Applied Food Research, 2(2), 100218. https://doi.org/10.1016/j.afres.2022.100218

Uusitalo S, Aernouts B, Sumen J, Eero H, Utriainen M, Frondelius L, Sari K, & Pastell M. (2019). Comparison of milk analysis performance between NIR laboratory analyser and miniaturised NIR MEMS sensors. Conference: ICAR Technical Series no. 24: New traits and adding new value to the recording and ID services in the animal production, 111-115. https://lirias.kuleuven.be/2911470?limo=0

Verma DK., & Srivastav PP. (2019). Science and Technology of Aroma, Flavor, and Fragrance in Rice. Food Science & Technology, 370. https://doi.org/10.1201/b22468

Wadood SA, Nie J, Li CL, Rogers KM, Khan A, Khan WA, Qamar A, Zhang Y, & Yuwei Y. (2022). Rice authentication: An overview of different analytical techniques combined with multivariate analysis. Journal of Food Composition and Analysis, 112, 104677. https://doi.org/10.1016/j.jfca.2022.104677

Williams, P.C. and Sobering, D.C. (1996) How Do We Do It: A Brief Summary of the Methods We Use in Developing Near Infrared Calibration. In Davis, A.M.C. and Williams, P. (Eds.), Near Infrared Spectroscopy: The Future Waves, NIR Publications, Chichester, 185-188.

Xie C, Chu B, & He Y. (2018). Prediction of banana color and firmness using a novel wavelengths selection method of hyperspectral imaging. Food Chemistry, 245, 132-140. https://doi.org/10.1016/j.foodchem.2017.10.079

Downloads

Published

2024-08-12