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ABSTRACT 
 

  
Sigupai rice, Indonesia local aromatic rice varieties grown in South-West region of 

Aceh, is highly valued for its fragrance and quality, making it susceptible to 

adulteration. This study compares the performance of two portable Near-infrared 

(NIR) devices, SCiO and NeoSpectra, for rapid authentication of Sigupai rice. We 

evaluated 86 samples for qualitative analysis (i.e. authentic vs adulterated rice) and 

44 samples for quantitative analysis (i.e. the level of adulteration). For the 

qualitative analysis using partial least squares-discriminant analysis (PLS-DA), the 

best estimation model could differentiate authentic and adulterated samples with an 

accuracy, sensitivity, specificity, and false positive rates of 89.29%, 92.86%, 

85.71% and 14.29% for the NeoSpectra and 97.44%, 100%, 94.87%, and 5.13% for 

the SCiO, respectively at the validation stage. For quantitative analysis using 

partial least squares-regression (PLS-R), the best estimation model could estimate 

the level of adulteration with a coefficient of determination (R²), RMSEP, RPD, and 

consistency values of 0.92, 1.50%, 5.93 and 100.69% for the NeoSpectra and 0.96, 

1.31%, 6.83 and 104.78% for the SCiO. Both portable NIR devices could be used as 

a rapid analysis tool for the authenticity of Sigupai rice with high accuracy. 

However, in this study the SCiO device showed a better performance. 

1. INTRODUCTION 

In several countries, there are aromatic rice varieties that are well known for their unique characteristics and flavors 

that make them have high economic value, such as jasmine rice (Thailand), basmati rice (India/Pakistan), and Japonica 

rice (Japan) (Verma et al., 2019). Likewise in Indonesia, several aromatic rice varieties are quite well known, one of 

which is Sigupai, a local aromatic which is grown in the South-West region of Aceh Province, Indonesia (Jalil et al., 

2022). This aromatic rice has superior characteristics including long grains, soft texture, producing a distinctive aroma 

and taste when cooked, and resistance to drought but also has several weaknesses including low yields, long 

harvesting time and high plant architecture (Bakhtiar et al., 2011). The Sigupai variety is also widely used as a parent 

plant in plant breeding programs aimed at obtaining superior aromatic rice (Deski et al., 2023; Gusmelly et al., 2024). 

Besides the aromatic feature of Sigupai exploited during breeding, breeders employed it for the adaptative 

characteristics of biotic and abiotic stressors (Hayati & Efendi, 2021), particularly in this era of devasting climatic 

change. These adaptive features are a plus to this variety to meet Indonesia’s rice sufficiency and food security.  
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In general, the high economic value of various aromatic rice makes it a target for counterfeiting or adulteration, 

where lower-quality rice is mixed with or substituted for the authentic aromatic rice. This not only deceives consumers 

but also undermines the integrity of the agricultural market. To address this challenge, accurate and efficient methods 

for authenticating aromatic rice are essential. Various approaches have been used to authenticate aromatic rice 

varieties. These methods include near-infrared (NIR) reflectance spectroscopy (Kim et al., 2003; Teye et al., 2019; 

Doan et al., 2021), hyperspectral imaging (Edris et al., 2024), multispectral imaging (Liu et al., 2021), handheld near-

infrared spectroscopy combined with electronic nose (e-nose) Aznan et al. (2022) etc. Each of these methods has its 

strengths and limitations, but they all demonstrate the potential for rapid and non-destructive rice authentication. 

Among these various methods, spectroscopy-based approach, especially NIR spectroscopy, is one of the most widely 

adopted method. NIR spectroscopy works by measuring the absorption of near-infrared light by the sample, providing 

a spectral fingerprint that can predict the chemical content or distinguish between different samples based on their 

chemical composition. 

Recent advancements in portable near-infrared (NIR) spectroscopy offer promising solutions for rapid, non-

destructive analysis and authentication of agri-food products. The presence of portable devices has brought significant 

progress regarding the use of NIR spectroscopy technology, especially its use for rapid analysis that can be carried out 

in loco or directly in the field (Folli et al., 2022). Therefore, recently this technology has been being widely adopted. 

This technology has been applied successfully for authentication or quality assurance of various agri-food products 

e.g. extra virgin olive oil (Borghi et al., 2020), chicken meat (Parastar et al., 2020; Rakhmawati et al., 2023), milk 

(Uusitalo et al., 2019), online assessment of changes occurring in fresh beef quality (Njume et al., 2021). Extensive 

use of this technology in rice authentication for the last twenty years has been reviewed by Wadood et al., (2022). 

Portable NIR spectrometer devices are also robust to distinct adulteration of powdered rice of various proportion (Teye 

& Amuah, 2022). Doan et al., (2021) used SCiO handheld spectrometer with partial least squares-discriminant 

analysis (PLS-DA), and soft independent modeling of class analogies (SIMCA) to identify fraud in mixing high 

quality rice from cheap rice. 

There are various commercial portable NIR devices on the market including SCiO, NeoSpectra, Viavi MicroNIR, 

Felix 750, SCiO, NIRscan, Trinamix, or Linksqure (Sagita et al., 2024). In general, those portable NIR devices can be 

divided into two groups based on their effective operating wavelength, short wave near-infrared (SWNIR) and long 

wave near-infrared (LWNIR) based devices. This study aims to compare the performance of two portable NIR 

devices, SCiO and NeoSpectra, for a rapid authentication of Sigupai aromatic rice especially for on-site inspection. 

These two devices work at different NIR wavelength ranges. The SCiO device works on SWNIR while the 

NeoSpectra device works on LWNIR. By evaluating their performance in identifying authentic rice from the 

adulterated samples, it can be used as reference to determine the most reliable tool for field use by farmers, traders, 

and quality control agencies. The outcomes of this comparison will not only provide insights into the best practices for 

rice authentication, but also contribute to safeguarding the authenticity of Sigupai rice, thereby protecting both 

consumers and producers from the adverse effects of adulteration. 

2. MATERIAL AND METHOD 

2.1. Rice Sample 

The Sigupai aromatic rice used in this study was obtained from one of the rice mills in South-West region of Aceh 

Province, Indonesia. As an adulterant, Inpari rice was used which was obtained from the Public Company of Logistics 

Agency (Perusahaan Umum Badan Urusan Logistik – Perum Bulog) Aceh. Inpari rice was chosen because this variety 

has physical characteristics similar to Sigupai rice but with lower quality and a cheaper price. The comparison of 

visual appearance of Sigupai and Inpari rice is shown in Figure 1. 

To get the adulterated rice sample, Inpari rice as the adulterant was intentionally mixed with the authentic Sigupai 

rice. Before the mixing, all the rice samples were sorted to remove impurities. The level of adulteration (AL) was 

calculated based on the weight of Sigupai rice (WS) and the weight of Inpari rice as the adulterant (WI) using Eq. (1): 

𝐴𝐿 =  
𝑊𝐼

(𝑊𝑆+ 𝑊𝐼)
× 100%      (1) 
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Figure 1. Rice sample: a) Sigupai and b) Inpari rice variety. 

In total there were 44 samples of rice mixture with various adulteration level in the range of 0-30% (w/w). These 

rice mixtures were then used to create two sets of samples. The first data set was used in developing classification 

model to qualitatively differentiate authentic aromatic rice from adulterated rice. This set included 43 samples of 

adulterated rice with adulteration levels in the range of 1-30% and 43 samples of authentic Sigupai rice, making a total 

of 86 samples. The second data set was used in developing a predictive model to quantitatively predict the level of 

adulteration in a rice sample. In this case, it was 44 samples rice with adulteration levels in the range of 0-30% which 

have been previously prepared. 

2.2. Acquisition of Near-infrared Spectra 

In this study, two portable near-infrared devices SCiO (Consumer Physics, San Francisco, USA) and NeoSpectra (Si-

Ware, Cairo, Egypt) were used to acquire spectral data of rice samples. SCiO has an effective wavelength of 740-1070 

nm with a spectral resolution of 1 nm and NeoSpectra has an effective wavelength of 1350-2550 nm with a spectral 

resolution of 9 nm. In each spectra measurement, SCiO produces 331 data points, while NeoSpectra produces 257 data 

points. Each portable spectrometer device is connected to smartphone via Bluetooth and is operated using a special 

built-in mobile application. To obtain a valid measurement results, the SCiO and NeoSpectra devices need to be 

calibrated first. Calibration of the device is carried out by pointing the device at the standard white reference provided 

by the manufacturer and then select the calibration menu on the application. After calibration completed, the device is 

ready to be used for acquisition of spectral data.  

The setup of spectra acquisition is shown in Figure 2. For spectra measurement, 20 g of rice sample was weighted 

using analytical balance (Mettler Toledo PM 4800, USA) and then it was put on an 80 mm in diameter petri dish 

creating a pile of rice samples with a thickness of 15 mm.  The spectra measurement was carried out three times for 

each sample and then averaged. The measurements were carried out at room temperature. For each measurement, the 

 

Figure 2. Setup for spectra acquisition of rice sample: a) SCiO and b) NeoSpectra portable spectrometer. 

(a) (b) 

(a) (b) 
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typical scanning time is about 2-5 seconds. The reflectance data is then saved to the cloud and available for download 

in *.csv format for subsequent analysis. 

2.3. Data Analysis 

Spectra data of rice sample imported from the cloud were then analyzed using Unscrambler X 10.4 software (CAMO, 

Oslo, Norway). The analysis carried out using multivariate analysis to develop models for classifying authentic or 

adulterated rice and determining adulteration levels in rice samples. 

2.3.1. Classification Model of Authentic and Adulterated Rice  

The first model developed was a classification model for authentic rice and adulterated rice. The analysis was carried 

out to develop a prediction model based on partial least squares-discriminant analysis (PLS-DA). PLS-DA is a 

statistical technique commonly used for discriminant analysis and classification in chemometrics. It is a variant of 

partial least squares-regression (PLS-R) that is specifically designed for classification problems where the dependent 

variable is categorical (Fordellone et al., 2019). PLS-DA is a powerful tool for handling high-dimensional data and is 

widely used in various fields such as food analysis, medical diagnosis, and forensic science (Lee et al., 2018). 

 

Figure 3. Confusion matrix for evaluation of the model performance to predict authentic vs adulterated rice sample. 

The model was developed using 86 samples data consisting of 43 samples of authentic rice and 43 samples of 

adulterated rice with variations in the adulteration level of 1-30%. All data was then divided randomly with a 

proportion of 2/3 for calibration (58 data) and 1/3 for validation (28 data). During development of the PLS-DA model, 

the authentic Sigupai rice was assigned as 1 and the adulterated rice was assigned as 0. For the class assignment based 

on output of the model, a threshold value of 0.5 was applied. The performance of the developed model was then 

evaluated using confusion matrix (Figure 3) followed by calculation of accuracy, sensitivity, specificity, and false 

positive rate (FPR) using equation (2)-(5) based on prediction data denoted as True Positive (TP) where authentic 

Sigupai rice correctly predicted as authentic rice; True Negative (TN) where adulterated rice correctly predicted as 

adulterated rice; False Positive (FP) where adulterated rice incorrectly predicted as authentic rice; and False Negative 

(FN) where authentic rice incorrectly predicted as adulterated rice. A predictive model is considered of good quality if 

accuracy, sensitivity, and specificity are close to 100%, while FPR is close to 0%. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
     (2) 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
      (3) 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
      (4) 

 𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃+𝑇𝑁
         (5) 
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2.3.2. Predictive Model of the Level of Adulteration 

The second model developed was a prediction model of the level of adulteration in a rice sample. The model was 

developed using data obtained from 44 samples of adulterated rice with variations in the adulteration level of 0-30%. 

All data was then divided randomly with a proportion of 2/3 for calibration (29 data) and 1/3 for validation (15 data). 

The analysis was carried out using partial least square regression (PLS-R). PLS-R is a widely used chemometric 

technique which is applied in spectra data analysis to remove redundancy, making use of variables with the most 

representative chemical information of the sample. The PLS regression model is developed from a data set when the 

number of variables exceeds the number of samples by a linear combination of the spectra data and the measured 

analyst. It operates by first, decomposing the spectra data to obtain the principal components (PCs) of the main 

variables and the evaluation of the contribution of each PCs to the model (Xie et al., 2018). The original spectra data 

acquired by the SCiO and NeoSpectra portable NIR devices were correlated with the authentic rice and adulterated 

rice proportions. Apart from original spectra, spectra data that has undergone pre-treatment including smoothing, de-

trending, standard normal variate (SNV), multiplicative scatter correction (MSC), and derivatives were also used to 

obtain the best estimation model. The use of pre-treatment is intended to improve data quality by eliminating scattering 

effects, noise that occurs during measurements and to enhance the information contained in the spectral data.  

Performance of the developed model was then evaluated using three parameters, coefficient of determination (R²), 

root mean square error of calibration (RMSEC), root mean square error of prediction (RMSEP), ratio of prediction to 

deviation (RPD), and consistency. These metrics are determined using equations (6-9), respectively. A predictive 

model is considered of good quality if R² is close to 1 and the RMSE value is close to zero. Williams & Sobering 

(1996) recommend an RPD values >2.5 and >3.0 for models with a good and excellent prediction accuracy, 

respectively. Consistency in the range 80-110% is desirable and it indicates there is no underfitting or overfitting with 

the developed model. 

 𝑅2 = 1 −
∑ (𝑦𝑖−�̂�𝑖)2

𝑖

∑ (𝑦𝑖−�̅�𝑖)2
𝑖

       (6) 

 𝑅𝑀𝑆𝐸𝐶/𝑃 =  √
∑ (�̂�𝑖−𝑦𝑖)2𝑁

𝑖=1

𝑁
      (7) 

 𝑅𝑃𝐷 =  
𝑆𝐷

𝑅𝑀𝑆𝐸𝑃
        (8) 

 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 =  
𝑅𝑀𝑆𝐸𝐶

𝑅𝑀𝑆𝐸𝑃
× 100%     (9) 

where i represents index of the data; N represents number of the data; 𝑦𝑖 , �̂�𝑖 , and �̅�𝑖 represent actual value, predicted 

value, and average value of the i-th data; and SD represents standard deviation of the data. Furthermore, a limit of 

detection (LOD) analysis was also carried out for the best selected model for each Portable NIR device using the 

following equation: 

 𝐿𝑂𝐷 =  
3.3 ×𝜎

𝑚
        (10) 

where σ represents standard error of blanks which is approximated as intercept of the regression line and and m 

represents slope of the regression line of the calibration dataset. 

3. 3. RESULT AND DISCUSSION 

3.1. Characteristic of Near-infrared Spectra 

Figure 4 shows the acquired rice spectral data using SCiO and NeoSpectra portable spectrometer. Figure 4 shows the 

absorbance spectra, calculated from reflectance spectra data (R) as log (1/R), of Sigupai and Inpari rice. To observe 

more clearly the comparison of the two spectra and to avoid bias, both spectra have been pre-treated with baseline 

shift correction. Based on the figure, both spectra have a quite similar profile with several peaks and valleys at certain 

wavelengths although they vary in term of intensity. Several absorbance peaks were observed at wavelengths of 926  
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Figure 4. Spectra of rice sample acquired using: a) SCiO, and b) NeoSpectra portable spectrometer. 

and 999 nm for the SCiO device; 1472, 1760, 1943, 2100, 2300, and 2515 nm for NeoSpectra devices. These results 

are similar to the findings in other related studies (Osborne, 2006; Chen et al., 2008; Chen et al., 2018; Burestan et al. 

2020) that in rice grain and flour samples there were main absorption peaks and corresponding chemical fingerprints 

observed at wavelength of 998 nm (the O-H or N-H second overtone), 1457 and 1573 nm (the O-H and N-H first 

overtone), 1752 nm (the C-H first overtone), 1938 and 2100 nm (the O-H and N-H combinations), and 2295 nm (the 

C-H combinations).  

A similar spectra profile typical to rice measured using SCiO was reported by (Teye & Amuah, 2022), who 

revealed that the NIR region between 1039-1054, and 1055-1070 nm are C-H bonds and N-H amide bonds of 

symmetric stretching associated with the combination of starch, amylose, amylopectin, cellulose, and protein in rice. 

Also, the absorption peak at 2100 nm is used in the rice industry to quantify protein (Liu et al., 2014). A similar 

spectra profile typical to rice measured using NeoSpectra was reported by Liu et al. (2020), but the wavelength range 

(1000-2500 nm) differed slightly with this study (1350-2550 nm). The absorption peak at 1472 and 1943 nm are 

attributed to the combination of first overtone of O-H and C-H stretching mode of amylose molecules (Sampaio et al., 

2018; Shinzawa & Mizukado, 2018). The absorption peaks at 2300 and 2515 nm are related to the combinations of C-

H stretching and deformation associated with the aleurone layer (carbohydrates) covering the surface of intact rice 

grain (Tamura et al., 2016). 

Among other chemical contents, amylose content is one of the ingredients that plays an important role in 

distinguishing between Sigupai rice and Inpari rice. Sigupai rice has a medium amylose content of 20.92%, while 

Inpari rice has a low amylose content of 17.54% (Chairunnisak et al. 2021). According to Sattari (2015) rice can be 

classified as having high, low, and medium amylose levels. High amylose levels (>25%) generally produce rice that is 

dry when cooked and often becomes hard after cooling. Low amylose content (15-20%) produces fluffier and sticky 

rice. Moderate amylose content (20-25%) produces rice that is fluffier but not sticky, and is widely liked by most 

consumers. 

The first model developed is a model that qualitatively predicts whether a rice sample being analyzed is authentic or 

adulterated. As mentioned previously, apart from the original spectra data, several pre-treatments were also carried out 

to remove noise and to enhance the information contained in the spectra data. Figure 5 shows spectra data that has 

been processed with several pre-treatments. Table 1 shows a summary of the performance of the developed models. 

Next, the obtained model was validated using another dataset that was not used in the calibration stage. This was done 

to evaluate the generalization ability of the model developed in analyzing rice authenticity. Validation results are 

shown in Table 2. Based on all the parameters evaluated, it can be concluded that for both NIR devices the first 

derivative pre-treatment produces the model with the best performance. 
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Figure 5. Spectra of Sigupai vs. Inpari rice using: a) SCiO, and b) NeoSpectra portable spectrometer (Note: the spectra were 

corrected using baseline shift correction). 

Table 1. Calibration of predictive models in distinguishing the authentic from adulterated rice sample 

Device Pre-treatment PLS Factor 
Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

FPR 

(%) 

SCiO Original  10 100.0 100.0 100.0 0.0 

Smoothing SG 10 100.0 100.0 100.0 0.0 

1st Derivative SG 7 100.0 100.0 100.0 0.0 

SNV 10 99.4 100.0 98.9 1.1 

Detrending 9 100.0 100.0 100.0 0.0 

MSC 8 99.4 100.0 98.9 1.1 

NeoSpectra Original  10 100.0 100.0 100.0 0.0 

Smoothing SG 7 100.0 100.0 100.0 0.0 

1st Derivative SG 8 100.0 100.0 100.0 0.0 

SNV 10 99.4 100.0 98.9 1.1 

Detrending 6 100.0 100.0 100.0 0.0 

MSC 13 99.4 100.0 98.9 1.1 

Table 2. Validation of predictive models in distinguishing authentic from adulterated rice sample 

Device Pre-treatment PLS Factor 
Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

FPR 

(%) 

SCiO 

Original  10 97.4 100.0 94.9 5.1 

Smoothing SG 10 99.4 100.0 94.9 5.1 

1st Derivative SG 7 100.0 100.0 100.0 0.0 

SNV 10 100.0 100.0 100.0 0.0 

Detrending 9 100.0 100.0 100.0 0.0 

MSC 8 100.0 100.0 100.0 0.0 

NeoSpectra 

Original  10 89.3 92.9 85.7 14.3 

Smoothing SG 7 85.7 78.6 92.9 7.1 

1st Derivative SG 8 89.3 92.9 85.7 14.3 

SNV 10 85.7 85.7 85.7 14.3 

Detrending 6 78.6 64.3 92.9 7.1 

MSC 13 82.1 78.6 85.7 14.3 

Table 3. Confusion matrix of prediction performance using the best developed model 

Device Predicted Class 
Actual Class Overall Accuracy 

(%) Authentic Adulterated 

SCiO 
Authentic 14 0 

100.0 
Adulterated 0 14 

NeoSpectra 
Authentic 13 2 

89.3 
Adulterated 1 12 
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In more detail, the performance of the best model obtained using first derivative pre-treatment is shown as a 

confusion matrix (Table 3). Based on the data, both portable NIR devices could detect the authenticity of Sigupai rice 

with an overall accuracy of 89.3% and 100% for NeoSpectra and SCiO, respectively. Furthermore, in the case of Neo- 

Spectra there were two samples of adulterated rice which were incorrectly predicted as authentic rice. These two data 

are samples with adulteration levels of 3.80% and 2.0%. Therefore, it can be concluded that NeoSpectra using the 

PLS-DA method is able to predict the authenticity of Sigupai rice when mixed above 4%, while SCiO is able to 

predict all adulteration levels from 0-30%. 

3.3. Prediction Model of the Level of Adulteration 

The second model developed is a model that quantitatively predicts the level of adulteration in an analyzed rice 

sample. This model is primarily intended for inspection purposes regarding rice quality in the field by relevant 

agencies as part of consumer protection efforts. Table 4 shows a summary of the prediction model derived from both 

original spectra data and pre-treated data at the calibration stage. As with the previous analysis, the model obtained 

was also validated using another dataset that was not used in the calibration stage. 

Table 4. Summary of predictive models in estimating level of adulteration of rice sample 

Device Pre-treatment 
PLS 

Factor 
R²_cal R²_val 

RMSEC 

(%) 

RMSEP 

(%) 
RPD 

Consistency 

(%) 

SCiO Original  9 0.94 0.92 2.10 1.98 4.50 105.84 

Smoothing SG 6 0.88 0.83 3.01 2.97 3.77 101.39 

1st Derivative SG 7 0.98 0.96 1.37 1.31 6.83 104.78 

SNV 8 0.92 0.86 2.50 2.33 3.83 107.18 

Detrending 4 0.94 0.90 2.29 2.32 3.84 98.60 

MSC 8 0.92 0.90 2.49 2.26 3.95 110.21 

NeoSpectra Original  9 0.69 0.59 4.76 4.35 2.06 109.47 

Smoothing SG 11 0.86 0.67 3.67 3.43 2.60 107.06 

1st Derivative SG 9 0.98 0.92 1.52 1.50 5.93 100.69 

SNV 12 0.96 0.86 1.93 1.85 4.83 104.29 

Detrending 4 0.86 0.67 3.10 2.85 2.63 108.77 

MSC 12 0.98 0.94 1.60 1.49 6.00 105.84 

 

In general, most of the models met the criteria as good prediction models. However, the best prediction model for 

both NIR devices was obtained using pre-treatment first derivative. For the SCiO device, the best model has R², 

RMSEP, RPD, and consistency of 0.96, 1.31%, 6.83 and 104.8%. Meanwhile, for the NeoSpectra device the values are 

0.92, 1.50%, 5.93 and 100.7%. Based on these parameter values, it can be concluded that both devices can be used to 

predict adulteration levels in rice samples with high accuracy. An RPD value > 3 also indicates that this model is 

reliable. Apart from that, the consistency value is in the range of 80-110%, which indicates that there is no overfitting 

or underfitting with the model developed. Figure 6 shows a scatter plot of adulteration levels on predicted samples and 

actual values based on the best model for each portable NIR device. 

From the regression trendline (Figure 7), the limit of detection (LOD) of the developed model also can be 

calculated using formula (10). The LOD for the SCiO and NeoSpectra are 9.79% and 10.63% respectively. This is 

maybe one of reasons for the previous classification results where the prediction model for NeoSpectra incorrectly 

classified rice samples with adulteration levels of 2.0% and 3.8% as authentic rice because these adulteration levels 

are below the LOD value. However further analysis is needed considering that this is not the case for the SCiO even 

though both devices have nearly identical LOD values.  However, both models have shown a good performance and 

suitable for practical use considering that in the field the level of adulteration carried out is certainly far above the 

LOD value. This is because people who commit adulteration certainly expect great benefits from the illegal actions 

they carry out. 
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Figure 6. Spectra data processed with various pre-treatments including smoothing, first derivative SG, detrending, and SNV for 

SCiO (a,c,e,g) and NeoSpectra (b,d,f,h) portable spectrometer. 
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Figure 7. Scatter plot of actual vs predicted adulteration level of rice sampe from the best developed model: a) SCiO, and b) 

NeoSpectra portable NIR device. 

Based on the analysis carried out, it is proven that the two portable NIR devices can be used for the authentication 

process of Sigupai aromatic rice, both to differentiate qualitatively between authentic or adulterated rice samples, as 

well as for further analysis related to estimating the level of adulteration. However, the SCiO device shows better 

performance than the NeoSpectra device.  This may be caused by the different characteristic of the two devices. The 

SCiO operates at SWNIR, while NeoSpectra operates at LWNIR. NIR energy in the SWNIR region has a stronger 

penetration and a lower heating, in contrast to that in the LWNIR region (Guo et al., 2016). Therefore, the light can 

penetrate deeper and acquire more information about the samples.  

The future direction of this research is to integrate the model that has been developed into a mobile application so 

that it is easy to use especially for on-site inspection by control agencies, farmers, distributors, and sales agents which 

is beneficial for restoring the trust and confidence level of quality in the supply chain. Apart from that, it is also an 

interesting opportunity to further explore the use of different chemometrics methods including machine learning that 

can improve the performance of the predictive model. 

4. CONCLUSIONS  

This research compares the performance of two commercial portable NIR devices for authenticating Sigupai rice, a 

local Aceh aromatic rice that has unique characteristics and high economic value. For the qualitative analysis of the 

authenticity of aromatic rice based on partial least squares-discriminant analysis (PLS-DA), the best estimation model 

obtained had accuracy, sensitivity, specificity and false positive rates (FPR) at the validation stage of 89.29%, 92.86%, 

85.71% and 14.29% for the NeoSpectra device and 97.44%, 100%, 94.87%, and 5.13% for the SCiO device, 

respectively. For quantitative analysis of estimating the level of aromatic rice adulteration based on partial least 

squares-regression (PLS-R), the best estimation model obtained has coefficient of determination (R²), RMSEP, RPD, 

and consistency values of 0.92, 1.50%, 5.93 and 100.69% for the NeoSpectra device and 0.96, 1.31%, 6.83 and 

104.78% for the SCiO device. Both portable near-infrared spectrometer devices, NeoSpectra and SCiO, have the 

potential to be used as a rapid analysis tool for the authenticity of Sigupai aromatic rice with high accuracy. However, 

in this study the SCiO device showed a better performance compared to the NeoSpectra device. Further research could 

be conducted by increasing the sample size and using to validate the application of these devices by actors in the rice 

supply chain: farmers, traders, and quality control agencies. 
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