Artificial Neural Network Model to Predict °brix and pH of Banana Based on Color Parameters
DOI:
https://doi.org/10.23960/jtep-l.v13i3.739-749Abstract
Artificial neural network (ANN) was used to predict internal quality parameters (oBrix and pH) of lady finger banana. This research consisted of three stages, namely: (1) capturing images of lady finger banana using a computer vision system; (2) measurement of oBrix and pH of the banana; (3) ANN architecture analysis using the Matlab R2019a application. The ANN architectural model consisted of 3 output models, namely: (1) oBrix values; (2) pH value; (3) oBrix and pH values. The ANN architecture analysis was carried out through two phases. Phase I consisted of 45 experimental units and phase II with 35 experimental units. The best ANN architecture to be used as a prediction model for oBrix and pH of golden banana fruit is ANN architecture model 3 with the number of neurons inside the hidden layer = 3; activation function in hidden layer = logsig; activation function inside the output layer = logsig; data transformation range 0 − 1; learning rate value = 0.01; learning algorithm = tradingda; with MSE (mean square error), MAE (mean absolute error) performance and R correlation coefficient from training results of 0.0954; 0.2619 and 0.6538; test results 0.0392; 0.1606 and 0.7000 and validation results 0.0289; 0.1474 and 0.7889.
Keywords: Artificial neural networks, Color, Computer vision system, CVS, RGB.
References
Abdel-Sattar, M., Aboukarima, A.M., & Alnahdi, B.M. (2021). Application of artificial neural network and support vector regression in predicting mass of ber fruits (Ziziphus mauritiana Lamk.) based on fruit axial dimensions. PLoS ONE, 16(1), e0245228. https://doi.org/10.1371/JOURNAL.PONE.0245228
Abdullah, M.Z., Guan, L.C., Lim, K.C., & Karim, A.A. (2004). The applications of computer vision system and tomographic radar imaging for assessing physical properties of food. Journal of Food Engineering, 61(1), 125–135. https://doi.org/10.1016/S0260-8774(03)00194-8
Akbar, Y.M., Masithoh, R.E., & Khuriyati, N. (2017). Aplikasi analisis multivariat berdasarkan warna untuk memprediksi Brix dan pH pada pisang. Agritech, 37(1), 108-114. https://doi.org/10.22146/agritech.17022
Al-Saif, A.M., Abdel-Sattar, M., Eshra, D.H., Sas-Paszt, L., & Mattar, M.A. (2022). Predicting the chemical attributes of fresh citrus fruits using artificial neural network and linear regression models. Horticulturae 2022, 8(11), 1016. https://doi.org/10.3390/HORTICULTURAE8111016
Baiano, A., Terracone, C., Peri, G., & Romaniello, R. (2012). Application of hyperspectral imaging for prediction of physico-chemical and sensory characteristics of table grapes. Computers and Electronics in Agriculture, 87(2012), 142–151. https://doi.org/10.1016/j.compag.2012.06.002
Baykal, H., & Yildirim, H.K. (2013). Application of artificial neural networks (ANNs) in wine technology. Critical Reviews in Food Science and Nutrition, 53(5), 415–421. https://doi.org/10.1080/10408398.2010.540359
Chen, C.R., & Ramaswamy, H.S. (2002). Color and texture change kinetics in ripening bananas. LWT - Food Science and Technology, 35(5), 415–419. https://doi.org/https://doi.org/10.1006/fstl.2001.0875
Coulibaly, P., Anctil, F., Aravena, R., & Bobée, B. (2001). Artificial neural network modeling of water table depth fluctuations. Water Resources Research, 37(4), 885–896. https://doi.org/10.1029/2000WR900368
Cynthia, E.P., & Ismanto, E. (2017). Jaringan syaraf tiruan algoritma backpropagation dalam memprediksi ketersediaan komoditi pangan Provinsi Riau. Seminar Nasional Teknologi Informasi Komunikasi dan Industri, 271–282. https://ejournal.uin-suska.ac.id/index.php/SNTIKI/article/view/3306
Francis, F.J. (1995). Quality as influenced by color. Food Quality and Preference, 6(3), 149–155.
Gholipoor, M., & Nadali, F. (2019). Fruit yield prediction of pepper using artificial neural network. Scientia Horticulturae, 250, 249–253. https://doi.org/10.1016/J.SCIENTA.2019.02.040
Gomes, J.F.S., Vieira, R.R., & Leta, F.R. (2013). Colorimetric indicator for classification of bananas during ripening. Scientia Horticulturae, 150(2013), 201–205. https://doi.org/10.1016/j.scienta.2012.11.014
Harahap, I.Y., & Lubis, M.E.S. (2018). Penggunaan model jaringan saraf tiruan (artificial neuron network) untuk memprediksi hasil tandan buah segar (TBS) kelapa sawit berdasar curah hujan dan hasil TBS sebelumnya. Jurnal Penelitian Kelapa Sawit, 26(2), 59–70. https://doi.org/10.22302/IOPRI.JUR.JPKS.V26I2.42
Herianto, A., Hamzah, F., & Yusmarini. (2015). Studi pemanfaatan pisang mas (Musa acuminata) dan buah naga merah (Hylocereus polyrhizus) dalam pembuatan selai. JOM FAPERTA, 2(2).
Huang, X., Wang, H., Qu, S., Luo, W., & Gao, Z. (2021). Using artificial neural network in predicting the key fruit quality of loquat. Food Science & Nutrition, 9(3), 1780–1791. https://doi.org/10.1002/FSN3.2166
Jaiswal, P., Jha, S.N., & Bharadwaj, R. (2012). Non-destructive prediction of quality of intact banana using spectroscopy. Scientia Horticulturae, 135, 14–22. https://doi.org/10.1016/j.scienta.2011.11.021
Jaiswal, P., Jha, S.N., Kaur, P.P., Bhardwaj, R., Singh, A.K., & Wadhawan, V. (2014). Prediction of textural attributes using color values of banana (Musa sapientum) during ripening. Journal of Food Science and Technology, 51(6), 1179–1184. https://doi.org/10.1007/s13197-012-0614-2
Kaveh, M., & Chayjan, R.A. (2014). Prediction of some physical and drying properties of terebinth fruit (Pistacia atlantica L.) using Artificial Neural Networks. Acta Scientiarum Polonorum. Technologia Alimentaria, 13(1), 65–78. https://doi.org/10.17306/J.AFS.2014.1.6
Liew, & Lau, C.Y. (2012). Determination of quality parameters in Cavendish banana during ripening by NIR spectroscopy. In International Food Research Journal, 19(2), 751-758.
Masithoh, R.E., Rahardjo, B., Sutiarso, L., & Hardjoko, A. (2012). Model jaringan syaraf tiruan untuk memprediksi kualitas tomat berdasarkan parameter warna RGB. Agritech, 32(4), 411-417.
Nurhayati, Tamtarini, Jayus, Ruriani, E., & Hidayati, L.N. (2014). Sifat-sifat prebiotik ripe banana chip (RBC) Musa sinensis. Jurnal Agroteknologi, 8(1), 94–100.
Pathare, P.B., Opara, U.L., & Al-Said, F.A.J. (2013). Colour measurement and analysis in fresh and processed foods: A review. In Food and Bioprocess Technology, 6(1), 36–60. https://doi.org/10.1007/s11947-012-0867-9
Rajkumar, P., Wang, N., EImasry, G., Raghavan, G.S.V., & Gariepy, Y. (2012). Studies on banana fruit quality and maturity stages using hyperspectral imaging. Journal of Food Engineering, 108(1), 194–200. https://doi.org/10.1016/j.jfoodeng.2011.05.002
Ristiyana, S., Tanzil, A.I., Saputra, T.W., & Purnamasari, I. (2022). Pelatihan pembuatan pie pisang sebagai makanan khas di Desa Kandangtepus Kecamatan Senduro Kabupaten Lumajang. Jurnal Pengabdian Magister Pendidikan IPA, 5(1), 169–172.
Sanaeifar, A., Bakhshipour, A., & De La Guardia, M. (2016). Prediction of banana quality indices from color features using support vector regression. Talanta, 148(2016), 54–61. https://doi.org/10.1016/j.talanta.2015.10.073
Sheehy, T., & Sharma, S. (2011). The nutrition transition in the Republic of Ireland: Trends in energy and nutrient supply from 1961 to 2007 using Food and Agriculture Organization food balance sheets. British Journal of Nutrition, 106(7), 1078–1089. https://doi.org/10.1017/S0007114511001395
Simanungkalit, F.J., & Naibaho, B. (2018). Sistem pendukung keputusan monitoring dan peramalan harga beras Kabupaten Deli Serdang, Sumatera Utara. Agritech, 38(2), 208-216. https://doi.org/10.22146/agritech.16833
Simanungkalit, F.J., & Simanjuntak, R. (2020). Rancang bangun computer vision system (CVS) sebagai instrumen pengukuran warna buah. Jurnal Agritech, 40(1), 21–30. https://doi.org/10.22146/agritech.29102
Simanungkalit, F.J., Sutiarso, L., & Purwadi, D. (2013). Sistem pendukung keputusan berbasis jaringan syaraf tiruan untuk peramalan harga komoditas tanaman pangan. Jurnal Agritech, 33(1), 70–80.
Soltani, M., Alimardani, R., & Omid, M. (2011). Evaluating banana ripening status from measuring dielectric properties. Journal of Food Engineering, 105(4), 625–631. https://doi.org/10.1016/j.jfoodeng.2011.03.032
Utomo, B., Marsiti, C.I.R., & Damiati. (2018). Uji kualitas tepung pisang mas (Musa Acuminata). Jurnal Bosaparis: Pendidikan Kesejahteraan Keluarga, 9(3), 189–199. https://doi.org/10.23887/jjpkk.v9i3.22146
Wu, D., & Sun, D.W. (2013). Colour measurements by computer vision for food quality control - A review. Trends in Food Science and Technology, 29(1), 5–20. https://doi.org/10.1016/j.tifs.2012.08.004
Downloads
Published
Issue
Section
License
- Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International Lice that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Teknik Pertanian Lampung
JTEPL is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.