Application of Stereo Vision to Control the Movement of the Robot Arm Towards the Position of Red Chilies
DOI:
https://doi.org/10.23960/jtep-l.v13i3.615-627Abstract
The trend of decreasing young workers in the agricultural sector needs to be anticipated by developing intelligent machines known as agricultural robots. This research aims to apply a stereo vision system to control the movement of the robot's grip towards the 3D position of the red chili fruit. The stereo vision system installed on the robot waist (joint-2) is used to capture plant images and process them using HSV masking filters and triangulation principal to obtain the 3D center point position of the fruit. The robot joint movement is calculated using geometric based inverse kinematics. The research results show that the average accuracy of the stereo vision system is 93.9 %. The average grip positioning accuracy is 95.6 % to the actual chili fruit position and 98.5 % to the stereo vision calculation value. The average stability of the stereo vision values is 99.5 %, while the average positioning stability of the robot's grip is 99.6 %. Time consumption for image processing is 0.053 s while time consumption for robot grip movement is 9 s. Therefore, the stereo vision system can be used to control robot's grip movement with a good accuracy.
Keywords: Red chili fruit, Robot arm, Stereo vision, Three-dimensional position.
References
Angulo, A.M., Pinto, L.P., Espinoza, E.S., Vidal, Y.S., & Colquehuanca, E.S. (2022). Assisted operation of a robotic arm based on stereo vision for positioning near an explosive device. Robotics, 11(5), 1–18. https://doi.org/10.3390/robotics11050100
Barbashov, N.N., Shanygin, S.V., & Barkova, A.A. (2022). Agricultural robots for fruit harvesting in horticulture application. IOP Conference Series: Earth and Environmental Science, 981(2022), 032009. https://doi.org/10.1088/1755-1315/981/3/032009
Delya, B., Tusi, A., Lanya, B., & Zulkarnain, I. (2014). Rancang bangun sistem hidroponik pasang surut otomatis untuk budidaya tanaman cabai. Jurnal Teknik Pertanian Lampung, 3(3), 205–212.
Ekowahyuni, L.P., & Wulansari, L.I. (2022). Yield test of hybrid harapan chili (Capsicum annuum L.). Jurnal Teknik Pertanian Lampung, 11(1), 35–47. https://doi.org/10.23960/jtep-l.v11i1.35-47
Erceg, D., Knezevvc, B.Z., & Grvhovve, Z. (2023). Stereo vision based robot welding. Journal of Physics: Conference Series, 2540(2023), 012017. https://doi.org/10.1088/1742-6596/2540/1/012017
Feng, Q., Zou, W., Fan, P., Zhang, C., & Wang, X. (2018). Design and test of robotic harvesting system for cherry tomato. International Journal of Agricultural and Biological Engineering, 11(1), 96–100. https://doi.org/10.25165/j.ijabe.20181101.2853
Hadinegoro, A., & Rizaldhi, D.A. (2021). Pengaruh HSV pada pengolahan citra untuk kematangan buah cabai. Building of Informatics, Technology and Science (BITS), 3(3), 155−163. https://doi.org/10.47065/bits.v3i3.1020
Hua, Y., Zhang, N., Yuan, X., Quan, L., Yang, J., Nagasaka, K., & Zhou, X. G. (2019). Recent advances in intelligent automated fruit harvesting robots. The Open Agriculture Journal, 13(1), 101–106. https://doi.org/10.2174/1874331501913010101
Ibadillah, A.F. (2018). Sistem penjejakan obyek dengan stero vision. Triac: Jurnal Teknik Elektro dan Komputer, 5(1), 1–10. https://doi.org/10.21107/triac.v5i1.3830
Indrabayu, Arifin, N., & Areni, I.S. (2019). Klasifikasi kematangan stroberi berbasis segmentasi warna dengan metode HSV. Jurnal Penelitian Enjiniring, 23(2), 113–116. https://doi.org/10.25042/jpe.112019.03
Jia, W., Zhang, Y., Lian, J., Zheng, Y., Zhao, D., & Li, C. (2020). Apple harvesting robot under information technology: A review. International Journal of Advanced Robotic Systems, 17(3), 1–16. https://doi.org/10.1177/1729881420925310
Kaleem, A., Hussain, S., Aqib, M., Cheema, M.J.M., Saleem, S.R., & Farooq, U. (2023). Development challenges of fruit-harvesting robotic arms: A critical review. AgriEngineering, 5(4), 2216–2237. https://doi.org/10.3390/agriengineering5040136
Moekasan, T.K., Gunadi, N., Adiyoga, W., & Sulastrini, I. (2015). Kelayakan teknis dan ekonomi budidaya cabai merah di dalam rumah kasa untuk menanggulangi serangan organisme pengganggu tumbuhan. J. Hort., 25(2), 180–192. https://doi.org/10.21082/jhort.v25n2.2015.p180-192
Nurhafsah, N., Rahmi, H., Andriani, I., & Fitriawaty. (2021). Analisis usahatani cabai di luar musim berdasarkan penerapan komponen budidaya cabai merah di provinsi Sulawesi Barat. Teknotan, 15(1), 9–14. https://doi.org/10.24198/jt.vol15n1.2
Onishi, Y., Yoshida, T., Kurita, H., Fukao, T., Arihara, H., & Iwai, A. (2019). An automated fruit harvesting robot by using deep learning. Robomech Journal, 6(13), 1–8. https://doi.org/10.1186/s40648-019-0141-2
Raja, V., Bhaskaran, B., Nagaraj, K.K.G., Sampathkumar, J.G., & Senthilkumar, S.R. (2022). Agricultural harvesting using integrated robot system. Indonesian Journal of Electrical Engineering and Computer Science, 25(1), 152–158. https://doi.org/10.11591/ijeecs.v25.i1.pp152-158
Sangeetha, G.R., Kumar, N., Hari, P.R., & Sasikumar, S. (2018). Implementation of a stereo vision based system for visual feedback control of robotic arm for space manipulations. Procedia Computer Science, 133(2018), 1066–1073. https://doi.org/10.1016/j.procs.2018.07.031
Subrata, I.D.M., & Melania, J. (2023). Design of cartesian type manipulator for automatically capturing plant images inside greenhouse. Jurnal Teknik Pertanian Lampung, 12(3), 545–558. https://doi.org/10.23960/jtep-l.v12i3.545-558
Susilowati, S.H. (2016). Fenomena penuaan petani dan berkurangnya tenaga kerja muda serta implikasinya bagi kebijakan pembangunan pertanian. Forum Penelitian Agro Ekonomi, 34(1), 35-55.
Tang, Y., Chen, M., Wang, C., Luo, L., Li, J., Lian, G., & Zou, X. (2020). Recognition and localization methods for vision-based fruit picking robots: A review. Frontiers in Plant Science, 11(510), 1–17. https://doi.org/10.3389/fpls.2020.00510
Taryudi. (2018). Rancang bangun vision sensor menggunakan stereo kamera pada sistem manipulasi objek. Autocracy: Jurnal Otomasi, Kendali Dan Aplikasi Industri, 5(1), 1–7.
Umam, F., Fuad, M., Suwarno, I., Ma’arif, A., & Caesarendra, W. (2023). Obstacle avoidance based on stereo vision navigation system for omni-directional robot. Journal of Robotics and Control (JRC), 4(2), 227–242. https://doi.org/10.18196/jrc.v4i2.17977
Wang, Z., Xun, Y., Wang, Y., & Yang, Q. (2022). Review of smart robots for fruit and vegetable picking in agriculture. International Journal of Agricultural and Biological Engineering, 15(1), 33–54. https://doi.org/10.25165/j.ijabe.20221501.7232
Yoshida, T., Onishi, Y., Kawahara, T., & Fukao, T. (2022). Automated harvesting by a dual-arm fruit harvesting robot. Robomech Journal, 9(19), 1–14. https://doi.org/10.1186/s40648-022-00233-9
Downloads
Published
Issue
Section
License
- Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International Lice that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Teknik Pertanian Lampung
JTEPL is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.