The Implementation of Micro/Nanobubbles (MNBs) Technology to Treat Basin Water as The Primary Water Source for Hydroponics in Greenhouse

Authors

  • Asep Yusuf Padjadjaran University
  • Chay Asdak Padjadjaran University
  • Mimin Muhaemin Padjadjaran University
  • Sophia Dwiratna N.P Padjadjaran University
  • Anto Tri Sugiarto National Research and Innovation Agency (BRIN) Bandung
  • Hilman Syaeful Alam National Research and Innovation Agency (BRIN) Bandung

DOI:

https://doi.org/10.23960/jtep-l.v13i1.197-204

Abstract

The greenhouse plays a pivotal role in creating an ideal environment for hydroponic cultivation. The greenhouse has utilized rainwater and basin water as a source of raw water for hydroponic farming. Presently, the water quality of Leuwi Padjadjaran basin fails to meet the standards required for hydroponics due to its turbidity, sediment content, discoloration, pH levels exceeding 7, and low dissolved oxygen (DO) concentration of 2.2 mg/l. The micro/nanobubbles (MNBs) technology stands as a viable method for water treatment owing to its capacity to bind impurities via radical OH. The application of MNBs for the treatment of basin water involves the use of a hydrodynamic cavitation MNBs generator with a dual-chamber rotating flow nozzle. The parameters evaluated in this research encompass DO concentration, MNBs stability, microbubble size, and the visual response to MNBs application. MNBs treatment was conducted with three different gases: air, oxygen, and ozone. Microbubbles were measured using the particle image velocimetry (PIV) method. The DO concentration reaches 21.6 mg/l when employing oxygen-based MNBs. On the third day post-generation, MNBs stability still maintains DO concentrations above the initial levels. Thus it can be used as hydroponic raw water. 

 

Keywords:  DO concentration, Greenhouse, Micro/nanobubbles, Water treatment.

Author Biographies

  • Asep Yusuf, Padjadjaran University
    Agricultural Engineering Study Program, Faculty of Agro-Industrial Technology
  • Chay Asdak, Padjadjaran University
    Agricultural Engineering Study Program, Faculty of Agro-Industrial Technology
  • Mimin Muhaemin, Padjadjaran University
    Agricultural Engineering Study Program, Faculty of Agro-Industrial Technology
  • Sophia Dwiratna N.P, Padjadjaran University
    Agricultural Engineering Study Program, Faculty of Agro-Industrial Technology

References

Alam, H.S., Sutikno, P., Soelaiman, T.A.F., & Sugiarto, A.T. (2022). Bulk nanobubbles: Generation using a two-chamber swirling flow nozzle and long-term stability in water. Journal of Flow Chemistry, 12(2), 161–173. https://doi.org/10.1007/s41981-021- 00208-8.

Amalia, A.F., Dalapati, A., Firdaus, J., Haryono, P., & Rachmawatie, E. (2021). Pengaruh konsentrasi air baku terhadap pertumbuhan tanaman selada pada budidaya hidroponik. J-PEN Borneo : Jurnal Ilmu Pertanian, 4(2), 1–6. https://doi.org/10.35334/jpen.v4i2.2092.

Batagoda, J.H., Hewage, S.D.A., & Meegoda, J.N. (2018). Nano-ozone bubbles for drinking water treatment. Journal of Environmental Engineering and Science, 14(2), 57–66. https://doi.org/10.1680/jenes.18.00015.

Chu, L.B., Xing, X.H., Yu, A.F., Zhou, Y.N., Sun, X.L., & Jurcik, B. (2007). Enhanced ozonation of simulated dyestuff wastewater by microbubbles. Chemosphere, 68(10), 1854–1860. https://doi.org/10.1016/j.chemosphere.2007.03.014.

Etchepare, R., Oliveira, H., Nicknig, M., Azevedo, A., & Rubio, J. (2017). Nanobubbles: Generation using a multiphase pump, properties and features in flotation. Minerals Engineering, 112, 19–26. https://doi.org/10.1016/j.mineng.2017.06.020.

Ghadimkhani, A., Zhang, W., & Marhaba, T. (2016). Ceramic membrane defouling (cleaning) by air nano bubbles. Chemosphere, 146, 379–384. https://doi.org/10.1016/j.chemosphere.2015.12.023.

Karoba, F., Nurjasmi, R., & Suryani, S. (2015). Pengaruh perbedaan pH terhadap pertumbuhan dan hasil tanaman kailan (Brassica oleraceae) sistem hidroponik NFT (nutrient film technique). Jurnal Ilmiah Respati Pertanian, 7(2), 529–534. Kementrian PUPR. (2018). Prasarana Air Baku Air Minum Sumber Hujan. Accessed on 12 January 2024 from: https://simantu.pu.go.id/epel/edok/016e2_Modul_10_Perencanaan_Air_Baku_dari_Air_Hujan.pdf

Liu, S., Wang, Q., Zhai, X., Huang, Q., & Huang, P. (2010). Improved pretreatment (coagulation-floatation and ozonation) of younger landfill leachate by microbubbles. Water Environment Research, 82(7), 657–665. https://doi.org/10.2175/106143010x12609736966522

Lyu, T., Wu, S., Mortimer, R.J.G., & Pan, G. (2019). Nanobubble technology in environmental engineering: Revolutionization potential and challenges. Environmental Science and Technology, 53(13), 7175–7176. https://doi.org/10.1021/acs.est.9b02821.

Michailidi, E.D., Bomis, G., Varoutoglou, A., Kyzas, G.Z., Mitrikas, G., Mitropoulos, A.C., Efthimiadou, E.K., & Favvas, E.P. (2020). Bulk nanobubbles: Production and investigation of their formation/stability mechanism. Journal of Colloid and Interface Science, 564, 371–380. https://doi.org/10.1016/j.jcis.2019.12.093.

Moris, A.O., Nur, M., Setyatwan, H., & Setiawan, I. (2022). Pengaruh pemaparan gas ozon terhadap kadar air, lignin, selulosa dan hemiselulosa pada Azolla pinnata. Jurnal Ilmu Ternak Universitas Padjadjaran, 22(1), 1-5. https://doi.org/10.24198/jit.v22i1.38037.

Presiden RI. (2021). Peraturan Pemerintah tentang Pengelolaan Kualitas Air dan Pengendalian Pencemaran Air.

Redhyka, G.G., Bahrudin, B., & Alam, H.S. (2017). Estimation of bubble size distribution using spatial digital image correlation. Proceedings of the 2nd International Conference on Automation, Cognitive Science, Optics, Micro Electro Mechanical System, and Information Technology (ICACOMIT 2017): 123–127. https://doi.org/10.1109/ICACOMIT.2017.8253399

Rosalina. (2018). Studi pengaruh jenis warna, dan waktu ozonasi terhadap penurunan kekeruhan pewarna. Warta Akab, 42(2), 1–8.

Safira, M., Yusuf, A., Salim, T.I., & Alam, H.S. (2023). Design and implementation of IOT-based monitoring system on nanobubble -based hydroponics farming. Jurnal Teknik Pertanian Lampung. 12(2), 470–483. https://doi.org/10.23960/jtep-l.v12i2.470- 483.

Tando, E. (2019). Review : Pemanfaatan teknologi greenhouse dan hidroponik sebagai solusi menghadapi perubahan iklim dalam budidaya tanaman hortikultura. Buana Sains, 19(1), 91-102. https://doi.org/10.33366/bs.v19i1.1530.

Ushikubo, F.Y., Furukawa, T., Nakagawa, R., Enari, M., Makino, Y., Kawagoe, Y., Shiina, T., & Oshita, S. (2010). Evidence of the existence and the stability of nano-bubbles in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 361(1–3), 31–37. https://doi.org/10.1016/j.colsurfa.2010.03.005.

Wagiono, M, & Fitriani, R. (2022). Pengaruh penggunaan air hujan hasil pemanenan air hujan pada pengembangan sumber air pertanian perkotaan terhadap pertumbuhan dan hasil tanaman kale (Brassica Oleraceae Var. Acephala) kultivar curly Gruner. Agrotek Indonesia, 7(1), 58–65.

Widyasari, E.N., Tjahjanto, R.T., & Khunur, M.M. (2014). Pengaruh laju alir udara pada ozonisasi dalam oksidasi emas. Kimia Student Journal, 1(2), 220–226.

Yasui, K., Tuziuti, T., & Kanematsu, W. (2018). Mysteries of bulk nanobubbles (ultrafine bubbles): Stability and radical formation. Ultrasonics Sonochemistry, 48, 259–266. https://doi.org/10.1016/j.ultsonch.2018.05.038.

Downloads

Published

2024-02-13

Issue

Section

Articles