The Implementation of Micro/Nanobubbles (MNBs) Technology to Treat Basin Water as The Primary Water Source for Hydroponics in Greenhouse
DOI:
https://doi.org/10.23960/jtep-l.v13i1.197-204Abstract
The greenhouse plays a pivotal role in creating an ideal environment for hydroponic cultivation. The greenhouse has utilized rainwater and basin water as a source of raw water for hydroponic farming. Presently, the water quality of Leuwi Padjadjaran basin fails to meet the standards required for hydroponics due to its turbidity, sediment content, discoloration, pH levels exceeding 7, and low dissolved oxygen (DO) concentration of 2.2 mg/l. The micro/nanobubbles (MNBs) technology stands as a viable method for water treatment owing to its capacity to bind impurities via radical OH. The application of MNBs for the treatment of basin water involves the use of a hydrodynamic cavitation MNBs generator with a dual-chamber rotating flow nozzle. The parameters evaluated in this research encompass DO concentration, MNBs stability, microbubble size, and the visual response to MNBs application. MNBs treatment was conducted with three different gases: air, oxygen, and ozone. Microbubbles were measured using the particle image velocimetry (PIV) method. The DO concentration reaches 21.6 mg/l when employing oxygen-based MNBs. On the third day post-generation, MNBs stability still maintains DO concentrations above the initial levels. Thus it can be used as hydroponic raw water.
Keywords: DO concentration, Greenhouse, Micro/nanobubbles, Water treatment.
References
Alam, H.S., Sutikno, P., Soelaiman, T.A.F., & Sugiarto, A.T. (2022). Bulk nanobubbles: Generation using a two-chamber swirling flow nozzle and long-term stability in water. Journal of Flow Chemistry, 12(2), 161–173. https://doi.org/10.1007/s41981-021- 00208-8.
Amalia, A.F., Dalapati, A., Firdaus, J., Haryono, P., & Rachmawatie, E. (2021). Pengaruh konsentrasi air baku terhadap pertumbuhan tanaman selada pada budidaya hidroponik. J-PEN Borneo : Jurnal Ilmu Pertanian, 4(2), 1–6. https://doi.org/10.35334/jpen.v4i2.2092.
Batagoda, J.H., Hewage, S.D.A., & Meegoda, J.N. (2018). Nano-ozone bubbles for drinking water treatment. Journal of Environmental Engineering and Science, 14(2), 57–66. https://doi.org/10.1680/jenes.18.00015.
Chu, L.B., Xing, X.H., Yu, A.F., Zhou, Y.N., Sun, X.L., & Jurcik, B. (2007). Enhanced ozonation of simulated dyestuff wastewater by microbubbles. Chemosphere, 68(10), 1854–1860. https://doi.org/10.1016/j.chemosphere.2007.03.014.
Etchepare, R., Oliveira, H., Nicknig, M., Azevedo, A., & Rubio, J. (2017). Nanobubbles: Generation using a multiphase pump, properties and features in flotation. Minerals Engineering, 112, 19–26. https://doi.org/10.1016/j.mineng.2017.06.020.
Ghadimkhani, A., Zhang, W., & Marhaba, T. (2016). Ceramic membrane defouling (cleaning) by air nano bubbles. Chemosphere, 146, 379–384. https://doi.org/10.1016/j.chemosphere.2015.12.023.
Karoba, F., Nurjasmi, R., & Suryani, S. (2015). Pengaruh perbedaan pH terhadap pertumbuhan dan hasil tanaman kailan (Brassica oleraceae) sistem hidroponik NFT (nutrient film technique). Jurnal Ilmiah Respati Pertanian, 7(2), 529–534. Kementrian PUPR. (2018). Prasarana Air Baku Air Minum Sumber Hujan. Accessed on 12 January 2024 from: https://simantu.pu.go.id/epel/edok/016e2_Modul_10_Perencanaan_Air_Baku_dari_Air_Hujan.pdf
Liu, S., Wang, Q., Zhai, X., Huang, Q., & Huang, P. (2010). Improved pretreatment (coagulation-floatation and ozonation) of younger landfill leachate by microbubbles. Water Environment Research, 82(7), 657–665. https://doi.org/10.2175/106143010x12609736966522
Lyu, T., Wu, S., Mortimer, R.J.G., & Pan, G. (2019). Nanobubble technology in environmental engineering: Revolutionization potential and challenges. Environmental Science and Technology, 53(13), 7175–7176. https://doi.org/10.1021/acs.est.9b02821.
Michailidi, E.D., Bomis, G., Varoutoglou, A., Kyzas, G.Z., Mitrikas, G., Mitropoulos, A.C., Efthimiadou, E.K., & Favvas, E.P. (2020). Bulk nanobubbles: Production and investigation of their formation/stability mechanism. Journal of Colloid and Interface Science, 564, 371–380. https://doi.org/10.1016/j.jcis.2019.12.093.
Moris, A.O., Nur, M., Setyatwan, H., & Setiawan, I. (2022). Pengaruh pemaparan gas ozon terhadap kadar air, lignin, selulosa dan hemiselulosa pada Azolla pinnata. Jurnal Ilmu Ternak Universitas Padjadjaran, 22(1), 1-5. https://doi.org/10.24198/jit.v22i1.38037.
Presiden RI. (2021). Peraturan Pemerintah tentang Pengelolaan Kualitas Air dan Pengendalian Pencemaran Air.
Redhyka, G.G., Bahrudin, B., & Alam, H.S. (2017). Estimation of bubble size distribution using spatial digital image correlation. Proceedings of the 2nd International Conference on Automation, Cognitive Science, Optics, Micro Electro Mechanical System, and Information Technology (ICACOMIT 2017): 123–127. https://doi.org/10.1109/ICACOMIT.2017.8253399
Rosalina. (2018). Studi pengaruh jenis warna, dan waktu ozonasi terhadap penurunan kekeruhan pewarna. Warta Akab, 42(2), 1–8.
Safira, M., Yusuf, A., Salim, T.I., & Alam, H.S. (2023). Design and implementation of IOT-based monitoring system on nanobubble -based hydroponics farming. Jurnal Teknik Pertanian Lampung. 12(2), 470–483. https://doi.org/10.23960/jtep-l.v12i2.470- 483.
Tando, E. (2019). Review : Pemanfaatan teknologi greenhouse dan hidroponik sebagai solusi menghadapi perubahan iklim dalam budidaya tanaman hortikultura. Buana Sains, 19(1), 91-102. https://doi.org/10.33366/bs.v19i1.1530.
Ushikubo, F.Y., Furukawa, T., Nakagawa, R., Enari, M., Makino, Y., Kawagoe, Y., Shiina, T., & Oshita, S. (2010). Evidence of the existence and the stability of nano-bubbles in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 361(1–3), 31–37. https://doi.org/10.1016/j.colsurfa.2010.03.005.
Wagiono, M, & Fitriani, R. (2022). Pengaruh penggunaan air hujan hasil pemanenan air hujan pada pengembangan sumber air pertanian perkotaan terhadap pertumbuhan dan hasil tanaman kale (Brassica Oleraceae Var. Acephala) kultivar curly Gruner. Agrotek Indonesia, 7(1), 58–65.
Widyasari, E.N., Tjahjanto, R.T., & Khunur, M.M. (2014). Pengaruh laju alir udara pada ozonisasi dalam oksidasi emas. Kimia Student Journal, 1(2), 220–226.
Yasui, K., Tuziuti, T., & Kanematsu, W. (2018). Mysteries of bulk nanobubbles (ultrafine bubbles): Stability and radical formation. Ultrasonics Sonochemistry, 48, 259–266. https://doi.org/10.1016/j.ultsonch.2018.05.038.
Downloads
Published
Issue
Section
License
- Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International Lice that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Teknik Pertanian Lampung
JTEPL is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.