The Prediction of Nitrogen, Phosphate, and Potassium Contents of Oil Palm Leaf Using Hand-Held Spectrometer

Authors

  • Badi Hariadi STIPER Institute of Agriculture
  • Hermantoro Sastrohartono Institute of Agriculture STIPER Yogyakarta
  • Andreas Wahyu Krisdiarto Institute of Agriculture STIPER Yogyakarta
  • Sukarman Sukarman Wilmar International Plantation
  • Septa Primananda Wilmar International Plantation
  • Tri Haryo Sagoro Wilmar International Plantation

DOI:

https://doi.org/10.23960/jtep-l.v13i1.71-81

Abstract

A hand-held spectrometer can be used to evaluate oil palm (Elaeis guineensis Jacq.) leaf nutrient contents without being destructive. This study aims to develop regression equations and analyze the performance of the prediction models for Nitrogen, Phosphate, and Potassium leaf nutrient contents. The dependent variable in this study was the result of the analysis of nutrient contents in frond number 17 which was carried out in the laboratory, while the independent variable was the leaf reflectance value scanned with a hand-held spectrometer. The Normalized Difference approach is used to create a vegetation index from the combination of reflectance values at two wavelengths. Vegetation index with the highest correlation value to the nutrient content of leaves, is used to make a prediction model for leaf nutrients using the Simple Linear Regression. The regression equations formed to predict the contents of nutrients N, P, and K have high R2. The RMSE values of the predicted contents of N, P, and K nutrients, respectively were 0.21, 0.01, and 0.13; and correctness values of those nutrients respectively were 93.29%, 95.5%, and 88.81%.

 

Keywords:  Hand-held spectrometer,  Oil palm,  Prediction,  Leaf nutrients contents.  

Author Biographies

  • Badi Hariadi, STIPER Institute of Agriculture
    Magister Program in Plantation Management
  • Hermantoro Sastrohartono, Institute of Agriculture STIPER Yogyakarta
    Department of Agricultural Engineering, Faculty of Agricultural Technology
  • Andreas Wahyu Krisdiarto, Institute of Agriculture STIPER Yogyakarta
    Department of Agricultural Engineering, Faculty of Agricultural Technology

References

Al-Rajab, J. M. (2021). Solar Radiation and its Role in Plant Growth. In Agro-Hydrometeorology.

BPS. (2020). Statistik Kelapa Sawit Indonesia 2019. Jakarta: Badan Pusat Statistik.

BPS. (2021). Statistik Kelapa Sawit Indonesia 2020. Jakarta: Badan Pusat Statistik.

BPS. (2022). Statistik Kelapa Sawit Indonesia 2021. Jakarta: Badan Pusat Statistik.

Budiman, R., Seminar, K.B., & Sudradjat, S. (2022). The estimation of nutrient content using multispectral image analysis in palm oil (Elaeis guineensis Jacq). IOP Conference Series: Earth and Environmental Science, 974, 012062. https://doi.org/10.1088/1755-1315/974/1/012062

Capili, N.I.F., Marilla, J.F., Montes, K.M.S., & Villaseñor, F.C. (2021). Spatial variability model for water quality assessment of the physicochemical parameters and the water quality index of laguna lake and its tributaries. Journal of Physics: Conference Series, 1803, 012006. https://doi.org/10.1088/1742-6596/1803/1/012006

Chicco, D., Warrens, M.J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, e623. https://doi.org/10.7717/peerj-cs.623

CID Bio-Science. (2023). Leaf spectroscopy for rapid non-destructive plant stress measurement. https://cid-inc.com/plant-science-tools/leaf-spectroscopy/ci-710-miniature-leaf-spectrometer/ (Accesed on 25 July 2023).

CPOPC. (2022). Palm Oil Supply And demand Outlook Report 2022.

Fairhurst, T.H., & Griffiths, W. (2014). Oil Palm: Best Management Practices for Yield Intensification. International Plant Nutrition Institute, South East Asia Program (IPNI SEAP), Canada. ISBN: 978-983-44503-1-1.

Gregory, M. (2022). Palm Oil Production, Consumption and Trade Patterns: The Outlook from an EU Perspective. FERN, Brussels, Belgium: 19 pp.

Griffiths, W., & Fairhurst, T. (2003). Implementation of best management practices in an oil palm rehabilitation project. Better Crops International, 17(1), 16-19.

Guo, B.-B., Zhu, Y.-J., Feng, W., He, L., Wu, Y.-P., Zhou, Y., Ren, X.-X., & Ma, Y. (2018). Remotely estimating aerial n uptake in winter wheat using red-edge area index from multi-angular hyperspectral data. Frontiers in Plant Science, 9, 675. https://doi.org/10.3389/fpls.2018.00675

Heule, M.J.H., & Kullmann, O. (2017). The science of brute force. Communications of the ACM, 60(8), 70–79. https://doi.org/10.1145/3107239

Horler, D.N.H., Dockray, M., & Barber, J. (1983). The red edge of plant leaf reflectance. International Journal of Remote Sensing, 4(2), 273–288. https://doi.org/10.1080/01431168308948546

Jayaselan, H., Nawi, N., Ismail, W., Shariff, A., Rajah, V., & Arulandoo, X. (2017). Application of spectroscopy for nutrient prediction of oil palm. Journal of Experimental Agriculture International, 15(3), 1–9. https://doi.org/10.9734/JEAI/2017/31502

Montaño, J., Palmer, A., Sesé, A., & Cajal, B. (2013). Using the R-MAPE index as a resistant measure of forecast accuracy. Psicothema, 25, 500–506. https://doi.org/10.7334/psicothema2013.23

Oliveira, L.F.R. de, Santana, R.C., & de Oliveira, M.L.R. (2019). Nondestructive estimation of leaf nutrient concentrations in eucalyptus plantations. CERNE, 25(2), 184–194. https://doi.org/10.1590/01047760201925022631

Prabowo, N.E. (2005). Penggunaan diagnosa daun untuk rekomendasi pemupukan kelapa sawit. Prosiding Pertemuan Teknis Kelapa Sawit 2005: Peningkatan Produktivitas Kelapa Sawit Melalui Pemupukan dan Pemanfaatan Limbah PKS. Medan, 19-20 April 2025.

Rendana, M., Abd Rahim, S., Idris, W., Lihan, T., & Ali Rahman, Z. (2015). A review of methods for detecting nutrient stress of oil palm in Malaysia. Journal of Applied Environmental and Biological Sciences, 5, 60–64.

Sastrohartono, H., Suparyanto, T., Sudigyo, D., & Pardamean, B. (2021). Prediction of Soil Organic Matter Levels with Image Processing 2 and Artificial Neural Networks Using Mobile Phones.

Sastrohartono, H., Suryotomo, A. P., Saifullah, S., Suparyanto, T., Perbangsa, A. S., & Pardamean, B. (2022). Drone application model for image acquisition of plantation areas and oil palm trees counting. 2022 International Conference on Information Management and Technology (ICIMTech), 167–171. https://doi.org/10.1109/ICIMTech55957.2022.9915223

Schober, P., Boer, C., & Schwarte, L.A. (2018). Correlation coefficients: Appropriate use and interpretation. Anesthesia & Analgesia, 126(5), 1763–1768. https://doi.org/10.1213/ANE.0000000000002864

Kalra, Y.P. (Editor) (1998). Handbook of Reference Methods for Plant Analysis. CRC Press. Boca Raton, FL: 287 pp.

Unkovich, M., Herridge, D., Peoples, M., Cadisch, G., Boddey, B., Giller, K., Alves, B., & Chalk, P. (2008). Measuring Plant-associated Nitrogen Fixation in Agricultural Systems. Australian Centre for International Agricultural Research (ACIAR).

Von Uexkull, H.R. ; Fairhurst, T.H. (1991). The Oil Palm: Fertilizing for High Yield and Quality. IPI Bulletin 12. International Potash Institute, Worblaufen-BernlSwitzerland: 79 pp.

Woittiez, L. S., van Wijk, M.T., Slingerland, M., van Noordwijk, M., & Giller, K.E. (2017). Yield gaps in oil palm: A quantitative review of contributing factors. European Journal of Agronomy, 83, 57–77. https://doi.org/10.1016/j.eja.2016.11.002

Downloads

Published

2024-01-29

Issue

Section

Articles