Combination of Osmotic Dehydration and Further Drying to Improve the Quality of Dried Carrots

Authors

  • Ranti - Ranti IPB University
  • Leopold Oscar Nelwan IPB University
  • Emmy - Darmawati IPB University

DOI:

https://doi.org/10.23960/jtep-l.v13i1.232-241

Abstract

The food industry needs carrots as a processed product for dry products using drying technology to maintain product quality. The aim of the research was to examine the effect of osmotic dehydration temperature with ternary solution on the quality of carrots. The treatments studied were osmotic media temperatures of 25°C and 50°C combined with oven drying and infrared until the water content reached ±10%. Parameters measured after osmotic dehydration were loss of water and increase in solids, quality parameters after further drying were water content and post-storage quality parameters were carotenoids and rehydration test. The dehydration treatment resulted in a reduction of water of 27.25%-44.24% and addition of solids of 15.37%- 18.31%. The initial water content of carrots before osmotic treatment was 90%, the water content after osmotic at 25°C was 65.72% and 50°C was 63.29%. Combination of osmotic with oven requires 22-24 hours of drying time while infrared requires 8- 10 hours of drying time. The best carotenoid value was osmotic dehydration at 25°C followed by an oven or infrared with a value of 32.95(mg/100g)−31.94(mg/100g). Whereas at 50°C the rehydration values were in the range 271.14%-301.42%

 

Keywords: Carrots, Infrared drying, Osmotic dehydration, Osmotic solution, Oven drying

Author Biographies

  • Ranti - Ranti, IPB University
    Departement of Phostharvest Technology
  • Leopold Oscar Nelwan, IPB University
    Departement of Mechanical and Biosystem Engineering
  • Emmy - Darmawati, IPB University
    Departement of Mechanical and Biosystem Engineering

References

Aktas, M., Sevik, S., Amini, A., & Khanlari, A. (2017). Analysis of drying of melon in a solar-heat recovery assisted infrared dryer. Solar Energy, 137, 500–515. https://doi.org/10.1016/j.solener.2016.08.036

Baysal, T., Icier, F., Ersus, S., & Yildiz, H. (2003). Effects of microwave and infrared drying on the quality of carrot and garlic. European Food Research and Technology, 218, 68–73. https://doi.org/10.1007/s00217-003-0791-3

Cui, Z.W., Xu, S.Y. and Sun, D.W. (2004). Effect of microwave vacum drying of thin layer infrared drying of wet olive husk. Chem. Eng.Process, 47, 1810-1818.

Danang, J., Faizah, H., Diah, K.A., & Erni, R. (2012). Pengeringan wortel (Daucus carota) secara dehidrasi osmosis. Prosiding Seminar Nasional Teknik Kimia Solbardio Brotohardiono IX. Program Studi Teknik Kimia UPN “Veteranâ€, Jawa Timur.

Effendi, R.D.C., Tamrin., Amin, M. (2022). Pengaruh suhu pengeringan dan tingkat ketebalan irisan wortel terhadap mutu tepung wortel. Jurnal Agricultural Biosystem Engineering, Universitas Negeri Lampung, 1(4), 488–495.

Gilandeh, Y.T., Kaveh, M., Aziz, M. (2020). Ultrasonic-microwave and infrared assisted convective drying of carrot. Applied Science, 10(18), 6309. https://doi.org/10.3390/app10186309

Gomes, A.T., Cereda, M.P., & Vilpoux, O. (2007). Uma technologia de baixo custo para o desevvolvimento da agricultural familiar. Revista Brasileira de Gestao e Desenvolvimento Regional, 3(3).

Hasbullah, R, & Putra, N.S. (2022). Study on the vacuum pressure and drying time of freeze-drying method to maintain the quality of strawberry. Jurnal Teknik Pertanian Lampung, 11(2), 279–291. http://dx.doi.org/10.23960/jtep-l.v11i2.279-291

Huang, D., Yang, P., Tang, X., Luo, L. (2021). Application of infrared radiation in the drying of food products. Trends in Food Science and Technology, 110, 765–777. https://doi.org/10.1016/j.tifs.2021.02.039

Ishwarya, S.P., Anandharamakrishnan, C., & Stapley, A.G.F. (2015). Spray-freeze-drying: A novel process for the drying of foods and bioproducts. Trends in Food Science &technology, 41(2), 161–181. https://doi.org/10.1016/j.tifs.2014.10.008

Jannah, M. (2011). Pengeringan Osmotik pada Irisan Buah Mangga Arumanis (Mangifera indica L.) dengan Pelapisan Kitosan. [Skripsi]. Institut pertanian bogor.

Lestari, R. (2017). Analisis laju perpindahan massa pada osmosis buah labu siam. [Skripsi]. Universitas sriwijaya.

Levent, I.A., & Ferit, A.K. (2012). Partial removal of water from red pepper by immersion in an osmotic solution before drying. African Journal of Biotechnology, 11(6). https://doi.org/10.5897/AJB11.1798

Magdalena, A. (2014). Pengaruh suhu dan konsentrasi larutan gula terhadap proses dehidrasi buah waluh. [Skripsi]. Fakultas Pertanian, Universitas Lampung.

Marabi, A., & Saguy, I.S. (2009). Rehydration and Reconstitusion of Foods. in Advances in Food Dehydration. CRc Press, 237–284.

Nurcahyono, I.D., & Zubaidah. (2014). Pengaruh konsentrasi carboxymethyl cellulose sebagai edible coating dan suhu pengeringan terhadap sifat fisik dan kimia wortel kering instan. Jurnal Pangan dan Agroindustri, 3(3), 1192–1202.

Octavia, R.Y. (2002). Pengaruh larutan Na2HPO4 dan Natrium Sitrat dan suhu pengeringan pada pembuatan nasi instan. [Skripsi]. Fakultas Teknologi Pertanian Institut Pertanian Bogor.

Sakare, P., Prasad, N., Thombrare, N., Singh, R., Sharma, S.C. (2020). Infrared drying of food materials: Recent advances. Food Engginering Reviews, 12(3), 381–398. https://doi.org/10.1007/s12393-020-09237-w

Saputra, D. (2001). Osmotic dehydration of pineapple. Drying Technology: An International Journal, 19(2), 415–425. https://doi.org/10.1081/DRT-100102914

Sari, W.P., Nelwan, L.O., & Sutrisno. (2018). Proses pembuatan manisan kering ubi jalar (Ipomoea Batatas L.)dengan dehidrasi osmotik dan pengeringan oven. Jurnal keteknikan Pertanian, 7(1), 33–40. https://doi.org/10.19028/jtep.07.1.33-40

Selvakumar, R. (2011). Studies on osmotic dehydration of carrot. [Thesis]. Bangalore. University of Agricultural Sciences.

Souza, J.S., Medeiros, M.F., Magalhaes, M.M.A., Rodrigues, S., & Fernandes, F.A.N. (2007). Optimization of osmotic dehydration of tomatoes in a ternary system followed by air-drying. Journal of Food Engineering, 83(4), 501–509. https://doi.org/10.1016/j.jfoodeng.2007.03.038

Spiess, W, & Behsnilian, D. (2006). Osmotic dehydration of fruits and vegetables. 13th World Congres of Food Science and Technology. Food Science & Technology, 1857–1869. https://doi.org/doi.org/10.1051/IUFoST:20060620

Sumnu, G., Turabi, E., & Oztop, M. (2004). Drying of carrots in microwave and halogen lamp–microwave combination ovens. LWT Food Science and Technology, 38(5), 549–553. https://doi.org/10.1016/j.lwt.2004.07.006

Vishwanathan, K.H., Giwari, G.K., & Hebbar, H.U. (2013). Infrared assisted dry- blanching and hybrid drying of carrot. Journal Food and Bioproducts Processing, 91(2), 89–94. https://doi.org/10.1016/j.fbp.2012.11.004

Wani, R.U.H., Kumar, P., & Kamlesh, P. (2015). Hot air convective dehydration characteristics of daucus carota var Nantes. Cogent Food & Agriculture, 1(1), 1096184. https://doi.org/10.1080/23311932.2015.1096184

Wirawan, S.K., & Anasta, N. (2013). Analisis Permeasi Air pada Dehidrasi Osmosis Pepaya (Carica papaya). AGRITECH, 33(3), 303-310.

Magdalena, A. (2014). Pengaruh suhu dan konsentrasi larutan gula terhadap proses dehidrasi buah waluh. [Skripsi]. Fakultas

Pertanian, Universitas Lampung.

Marabi, A., & Saguy, I.S. (2009). Rehydration and Reconstitusion of Foods. in Advances in Food Dehydration. CRc Press, 237–284.

Nurcahyono, I.D., & Zubaidah. (2014). Pengaruh konsentrasi carboxymethyl cellulose sebagai edible coating dan suhu pengeringan

terhadap sifat fisik dan kimia wortel kering instan. Jurnal Pangan dan Agroindustri, 3(3), 1192–1202.

Octavia, R.Y. (2002). Pengaruh larutan Na2HPO4 dan Natrium Sitrat dan suhu pengeringan pada pembuatan nasi instan. [Skripsi].

Fakultas Teknologi Pertanian Institut Pertanian Bogor.

Sakare, P., Prasad, N., Thombrare, N., Singh, R., Sharma, S.C. (2020). Infrared drying of food materials: Recent advances. Food

Engginering Reviews, 12(3), 381–398. https://doi.org/10.1007/s12393-020-09237-w

Saputra, D. (2001). Osmotic dehydration of pineapple. Drying Technology: An International Journal, 19(2), 415–425.

https://doi.org/10.1081/DRT-100102914

Sari, W.P., Nelwan, L.O., & Sutrisno. (2018). Proses pembuatan manisan kering ubi jalar (Ipomoea Batatas L.) dengan dehidrasi

osmotik dan pengeringan oven. Jurnal keteknikan Pertanian, 7(1), 33–40. https://doi.org/10.19028/jtep.07.1.33-40

Selvakumar, R. (2011). Studies on osmotic dehydration of carrot. [Thesis]. Bangalore. University of Agricultural Sciences.

Souza, J.S., Medeiros, M.F., Magalhaes, M.M.A., Rodrigues, S., & Fernandes, F.A.N. (2007). Optimization of osmotic dehydration

of tomatoes in a ternary system followed by air-drying. Journal of Food Engineering, 83(4), 501–509.

https://doi.org/10.1016/j.jfoodeng.2007.03.038

Spiess, W, & Behsnilian, D. (2006). Osmotic dehydration of fruits and vegetables. 13th World Congres of Food Science and

Technology, 1857–1869. https://doi.org/doi.org/10.1051/IUFoST:20060620

Sumnu, G., Turabi, E., & Oztop, M. (2004). Drying of carrots in microwave and halogen lamp–microwave combination ovens. LWT

Food Science and Technology, 38(5), 549–553. https://doi.org/10.1016/j.lwt.2004.07.006

Vishwanathan, K.H., Giwari, G.K., & Hebbar, H.U. (2013). Infrared assisted dry- blanching and hybrid drying of carrot. Journal

Food and Bioproducts Processing, 91(2), 89–94. https://doi.org/10.1016/j.fbp.2012.11.004

Wani, R.U.H., Kumar, P., & Kamlesh, P. (2015). Hot air convective dehydration characteristics of daucus carota var Nantes. Cogent

Food & Agriculture, 1(1), 1096184. https://doi.org/10.1080/23311932.2015.1096184

Wirawan, S.K., & Anasta, N. (2013). Analisis permeasi air pada dehidrasi osmosis pepaya (Carica papaya). AGRITECH, 33(3), 303-

Downloads

Published

2024-02-22

Issue

Section

Articles