Effect of Addition Fermented Cabbage Extract on Antioxidant Activity and Antinutritional Compounds of Foxtail Millet Flour
DOI:
https://doi.org/10.23960/jtep-l.v11i3.427-437Abstract
Fermented cabbage extract contains lactic acid bacteria Lactobacillus plantarum which produces tannase enzymes and Lactobacillus casei which produces phytase enzymes, which are very effective in reducing antinutrient compounds and increasing the antioxidant compound foxtail millet flour. This study aimed to determine the optimal fermentation time (0, 12, 24, 36, and 48 hours) to decrease antinutrient compounds and increase antioxidant compounds of foxtail millet flour using fermented cabbage extract. The results showed that an increase in fermentation time from 0 to 48 hours reduced levels of tannins and phytic acid in foxtail millet flour by 68.64 % (2.71 - 0.85 mg/g) and 66.60 % (5.33 - 1.78 mg/g) respectively. Afterwards there is an increase in antioxidant activity by 83.10 % (42.25 - 77.26 %) and a decrease in total phenolic content by 18.22 % (7.41 - 6, 06 mg GAE/g). In conclusion, the optimal fermentation time to produce FMF with the best characteristics (low antinutrients and high antioxidant activity) is 48 hours.
Keywords: phytic acid, tannin, antioxidant activity, foxtail millet flour, fermented cabbage extract
References
Aguilar-Zarate, P., Cruz-Hernandez, M.A., Montanez, J.C., Belmares-Cerda, R.E., & Aguilar, C.C. (2014). Bacterial tannases: production, properties and applications of tanasas bacterianas. Revistas Mexicana de Ingenieria Quimica, 13, 63-74
Amadou, I., Gounga, M.E., Shi, Y.H., & Le, G.H. (2014). Fermentation and heat-moisture treatment induced changes on the physicochemical properties of foxtail millet (Setaria italica) flour. Food and Bioproducts Processing, 92(1), 38-45. https://doi.org/10.1016/j.fbp.2013.07.009
Amadou, I., Le, G.W., & Shi, Y.H. (2013). Evaluation of antimicrobial, antioxidant activites, and nutritional values of fermented foxtail millet extract by Lactobacillus paracasei Fn032. International Journal of Food Properties, 16(6), 1179-1190. https://doi.org/10.1080/10942912.2011.579673
Anand, P., Kunnumakara, A.B., Sundaram, C., Harikumar, K.B., Tharakan, S.T., Lai, O.S., Sung, B., & Anggarwal, B.B. (2008). Cancer is a preventable disease that requires major lifestyle changes. Pharmaceutical Research, 25, 2097-2116. https://doi.org/10.1007/s11095-008-9661-9
Ananda, T.D., Srihardyastutie, A., Prasetyawan, S., & Safitri, A. (2019). Effect of mixed inoculums volume and pH on antinutritional level in cabbage fermentation using Saccharomyces cerevisiae and Lactobacillus plantarum. IOP Confrence Series: Materials Science and Engineering, 546, 062004.
Azeke, M.A., Egielewa, S.J., Eigbogbo, M.U., & Ihimire, I.G. (2011). Effect of germination on the phytase activity, phytate and total phosphorus contents of rice (Oryza sativa), maize (Zea mays), millet (Panicum miliaceum), sorghum (Sorghum bicolor) and wheat (Triticum aestivum). Journal of Food Science and Technology, 48, 724-729. https://doi.org/10.1007/s13197-010-0186-y
Devisetti, R., Yadahally, S.N., & Bhattacharya, S. (2014). Nutrients and antinutrients in foxtail and proso millet milled fractions: evaluation of their flour functionality. LWT – Food Science and Technology, 59(2), 889-995. https://doi.org/10.1016/j.lwt.2014.07.003
Du, R., Song, G., Zhao, D., Sun, J., Ping, W., & Ge, J. (2018). Lactobacillus casei starter culture improves vitamin content, increases acidity and decreases nitrite concentration during sauerkraut fermentation. International Journal of Food Science and Technology, 53(8), 1952-1931. https://doi.org/10.1111/ijfs.13779
GarcÃa-Mantrana, I., Yebra, M.J., Haros, M., & Monedero, V. (2016). Expression of bifidobacterial phytases in Lactobacillus casei and their application in a food model of whole-grain sourdough bread. International Journal of Food Microbiology, 216, 18-24. https://doi.org/10.1016/j.ijfoodmicro.2015.09.003
Gull, A., Prasad, K., & Kumar, P. (2016). Evaluation of functional, antinutritional, pasting and microstructural properties of millet flours. Journal of Food Measurement and Characterization, 10, 96-102. https://doi.org/10.1007/s11694-015-9281-0
Han, X., Yi, H., Zhang, L., Huang, W., Zhang, Y., Zhang, L., & Du, M. (2014). Improvement of fermented Chinese cabbage characteristics by selected starter cultures. Journal of Food Science, 79(7), 1387-1340. https://doi.org/10.1111/1750-3841.12495
Hutkins, R.W. (2006). Microbiology and Technology of Fermented Foods. Blackwell Publishing
He, L., Zhang, B., Wang, X., Li, H., & Han, Y. (2015). Foxtail milet: Nutritional and eating quality, and prospects for genetic improvement. Frontiers of Agricultural Science and Engineering, 12, 124-133. https://doi.org/10.15302/J-FASE-2015054
Hunaefi, D., Gruda, N., Riedel, H., Akumo, D.N., Saw, N.M.M.T, & Smetanska, I. (2013). Improvement of antioxidant activities in red cabbage sprouts by lactic acid bacterial fermentation. Journal of Food Biotechnology, 27(4), 279-302. https://doi.org/10.1080/08905436.2013.836709
Kumar, K.V.P., Dharmaraj, U., Sakhare, S.D., Inamdar, A.A. (2016). Flour functionality and nutritional characteristics of different roller milled streams of foxtail millet (Setaria italica). LWT – Food Science and Technology, 73, 274-279. https://doi.org/10.1016/j.lwt.2016.06.028
Lestienne, I., Buisson, M., Lullien-Pellerin, V., Picq, C., & Trèche, S. (2007). Losses of nutrients and anti-nutritional factors during abrasive decortication of two pearl millet cultivars (Pennisetum glaucum). Food Chemistry, 100(4), 1316-1323. https://doi.org/10.1016/j.foodchem.2005.11.027
Li, R., Zhao, J., Sun, C., Lu, W., Guo, C., & Xiao, K. (2010). Biochemical properties, molecular characterizations, functions, and application perspectives of phytases. Frontiers of Agriculture in China, 4, 195-209. https://doi.org/10.1007/s11703-010-0103-1
Ojo, MA. (2022). Tannins in foods: Nutritional implications and processing effects of hydrothermal techniques on underutilized hard-to-cook legume seeds–A review. Preventive Nutrition and Food Science, 27(1), 14-19. https://doi.org/10.3746%2Fpnf.2022.27.1.14
Onweluzo, J.C., & Nwabugwu, C.C. (2009). Fermentation of millet (Pennisetum americanum) and pigeon pea (Cajanus cajan) seeds for flour production: effects on composition and selected functional properties. Pakistan Journal of Nutrition, 8(6), 737-744. https://dx.doi.org/10.3923/pjn.2009.737.744
Onyango, C.A., Ochanda, S.O., Mwasaru, M.A., Ochieng, J.K., Mathooko, F.M., & Kinyuru, J.N. (2013). Effects of malting and fermentation on anti-nutrient reduction and protein digestibility of red sorghum, white sorghum and pearl millet. Journal of Food Research, 2(1), 41-49. https://doi.org/10.5539/jfr.v2n1p41
Osman, M.A. (2011). Effect of traditional fermentation process on the nutrient and antinutrient contents of pearl millet during preparation of Lohoh. Journal of the Saudi Society of Agricultural Science, 10(1), 1-6. https://doi.org/10.1016/j.jssas.2010.06.001
Pyo, Y.H., Lee, T.C., & Lee, Y.C. (2005). Effect of lactic acid fermentation on enrichment of antioxidant properties and bioactive isoflavones in soybean. Journal of Food Science, 70(3), 215-220. https://doi.org/10.1111/j.1365-2621.2005.tb07160.x
RodrÃguez, H., Rivas, B.d.l., Gómez-Cordové, C., & Muñoz, R. (2008). Characterization of tannase activity in cell-free extracts of Lactobacillus plantarum CECT 748T. International Journal of Food Microbiology, 121(1), 92-98. https://doi.org/10.1016/j.ijfoodmicro.2007.11.002
Saleh, A.S.M., Zhang, Q., Chen, J., & Shen, Q. (2013). Millet grains: nutritional quality, processing, and potential health benefits. Comprehensive Reviews in Food Science and Food Safety, 12(3), 281-295. https://doi.org/10.1111/1541-4337.12012
Sharma, B., & Gujral, H.S. (2019). Influence of nutritional and antinutritional components on dough rheology and in vitro protein & starch digestibility of minor millets. Food Chemistry, 229, 125115. https://doi.org/10.1016/j.foodchem.2019.125115
Sharma, N., & Niranjan, K. (2018). Foxtail millet: Properties, processing, health benefits, and uses. Journal of Food Review International, 34(4), 329-363. https://doi.org/10.1080/87559129.2017.1290103
Sharma, P., & Gujral, H.S. (2011). Effect of sand roasting and microwave cooking on antioxidant activity of barley. Food Research International, 44(1), 235-240. https://doi.org/10.1016/j.foodres.2010.10.030
Shejawale, D.D., Hymavathi, T.V., Manorama, K., & Zabeen, F. (2016). Effect of processing on nutraceutical properties of foxtail millet (Setaria italica) varieties grown in India. Journal of Food Measurement and Characterization, 10, 16-23. https://doi.org/10.1007/s11694-015-9271-2
Simwaka, J.E., Chamba, M.V.M., Huiming, Z., Masamba, K.G., & Luo, Y. (2017). Effect of fermentation on physicochemical and antinutritional factors of complementary foods from millet, sorghum, pumpkin and amaranth seed flours. International Food Research Journal, 24(5), 1869-1879
Siroha, A.K., Sandhu, K.S., & Kaur, M. (2016). Physicochemical, functional and antioxidant properties of flour from pearl millet varieties grown in India. Journal of Food Measurement and Characterization, 10, 311-318. https://doi.org/10.1007/s11694-016-9308-1
Svensson, L., Sekwati-Monang, B., Lutz, D.L, Schieber, A., & Gänzle, M.G. (2010). Phenolic acids and flavonoids in nonfermented and fermented red sorghum (Sorghum bicolor (L.) Moench). Journal of Agricultural and Food Chemistry, 58(16), 9214-9220. https://doi.org/10.1021/jf101504v
Taylor, J.R.N., & Duodu, K.G. (2014). Effects of processing sorghum and millets on their phenolic phytochemicals and the implications of this to the healthâ€enhancing properties of sorghum and millet food and beverage products. Journal of the Science of Food and Agriculture, 95(2), 225-237. https://doi.org/10.1002/jsfa.6713
Tian, W., Chen, G., Gui, Y., Zhang, G., & Li, Y. (2020). Rapid quantification of total phenolics and ferulic acid in whole wheat using UV-Vis spectrophotometry. Food Control, 123, 107691. https://doi.org/10.1016/j.foodcont.2020.107691
Utama, CS., Zuprizal., Hanim, C., & Wihandoyo. (2018). Isolasi dan identifikasi bakteri asal laktat selulolitik yang berasal dari jus kubis terfermentasi. Jurnal Aplikasi Teknologi Pangan, 7(1), 1-6. https://doi.org/10.17728/jatp.2155
Wang, N.F., Yan, Z., Li, C.Y., Jiang, N., & Liu, H.J. (2011). Antioxidant activity of peanut flour fermented with lactic acid bacteria. Journal of Food Biochemistry, 35(5), 1514-1521. https://doi.org/10.1111/j.1745-4514.2010.00473.x
Wu, P., Tian, J.C., Walker, C.E.(C)., & Wang, F.C. (2009). Determination of phytic acid in cereals – a brief review. International Journal of Food Science & Technology, 44(9), 1671-1676. https://doi.org/10.1111/j.1365-2621.2009.01991.x
Xiong, T., Guan, Q., Song, S., Hao, M., & Xie, M. (2012). Dynamic changes of lactic acid bacteria flora during Chinese sauerkraut fermentation. Food Control, 26(1), 178-181. https://doi.org/10.1016/j.foodcont.2012.01.027
Yonata, D., Nurhidajah., & Sya'di, Y.K. (2021). Profil tepung foxtail millet varietas lokal Majene termodifikasi melalui fermentasi ekstrak kubis terfermentasi. Jurnal Aplikasi Teknologi Pangan, 10(2), 60-69. https://doi.org/10.17728/jatp.8688
Yoon, K.Y., Woodams, E.E., & Hang Y.D. (2006). Production of probiotic cabbage juice by lactic acid bacteria. Bioresource Technology, 97(12), 1427-1430. https://doi.org/10.1016/j.biortech.2005.06.018
Zhang, L.Z., & Liu, R.H. (2015). Phenolic and carotenoid profiles and antiproliferative activity of foxtail millet. Food Chemistry, 174, 495-501. https://doi.org/10.1016/j.foodchem.2014.09.089.
Downloads
Published
Issue
Section
License
- Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International Lice that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Teknik Pertanian Lampung
JTEPL is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.