Rice Productivity Estimation Using Remote Sensing Method

Authors

DOI:

https://doi.org/10.23960/jtep-l.v11i3.451-465

Abstract

The calculation of crop productivity has now been facilitated by technological development using remote sensing technology or data generated by satellites. Determining the value of productivity using images will shorten the time and does not require much effort. A remote sensing model that connects satellite image reflectance data with rice plant parameters will be handy for monitoring biomass growth and predicting crop yields more quickly and efficiently. This study aimed to determine the regression equation to estimate the productivity of regional rice in Harau District, Lima Puluh Kota Regency. This study consisted of several stages: data collection, data processing, and calculation of rice productivity, NDVI regression analysis with rice productivity, and Nash-Sutcliffe Efficiency (NSE) test against the obtained equations. The regression equation obtained from the results of data analysis to estimate rice productivity in Harau District, Lima Puluh Kota Regency is y = - 82152x4 + 208465x3 - 197654x2 + 82986x - 13014, with an NSE value of 0.64 which is categorized as sufficient.

Keywords: MODIS, NDVI, Rice, Remote sensing; Productivity

References

Ajith, K., Geethalakshmi, V., Ragunath, K. P., Pazhanivelan, S., & Dheebakaran, G. (2017). Rice yield prediction using MODIS - NDVI (MOD13Q1) and land based observations. International Journal of Current Microbiology and Applied Sciences, 6(12), 2277–2293. https://doi.org/10.20546/ijcmas.2017.612.263

Berd, I., Ekaputra, E.G., Yanti, D., & Stiyanto, E. (2022). The use of NDVI algorithm in predicting the productivity of rice fields of Talang District of Solok Regency. International Conference on Sustainable Agriculture and Biosystem 2021 (ICSAB 2021).

BPS. (2021). Luas Panen, Produksi, dan Produktivitas Padi Menurut Provinsi 2018-2020. Badan Pusat Statistik Sumatera Barat. https://www.bps.go.id/indicator/53/1498/1/luas-panen-produksi-dan-produktivitas-padi-menurut-provinsi.html

Budiman, R., Ekaputra, E.G., & Berd, I. (2021). Kajian sebaran produktivitas padi sawah menggunakan data citra landsat 8 di Daerah Irigasi Batang Anai Kabupaten Padang Pariaman. Jurnal Teknologi Pertanian Andalas, 25(1), 46–53.

Ekaputra, E.G., Berd, I., Arlius, F., Yanti, D., & Irsyad, F. (2020). Inventory of West Sumatera Province area’s cropping pattern based on MODIS image data. IOP Conference Series: Earth and Environmental Science, 515, 012042. https://doi.org/10.1088/1755-1315/515/1/012042

Hafizh, S.A., Cahyono, A.B., & Wibowo, A. (2013). Penggunaan algoritma NDVI dan EVI pada citra multispektral untuk analisa pertumbuhan padi (Studi kasus : Kabupaten Indramayu, Jawa Barat). Geoid, 9(1), 7-10. https://doi.org/10.12962/j24423998.v9i1.733

Usery, E.L. (2015). Book review: Remote sensing and image interpretation (Lillesand, T.M., Kiiefer, R.W., & Chipman, J.W., 7th edition.). Photogrammetric Engineering & Remote Sensing, 81(8), 615-616. https://doi.org/10.14358/pers.81.8.615

Liyantono, Almadani, Y., Adillah, Y., Maulana Yusuf, M., Mahbub, M.N.R., & Fatikhunnada, A. (2019). Analysis of paddy productivity using NDVI and K-means clustering in Cibarusah Jaya, Bekasi Regency. IOP Conference Series: Materials Science and Engineering, 557, 012085. https://doi.org/10.1088/1757-899X/557/1/012085

Pradipta, D. (2012). Analisis Data Time Series NDVI-SPOT Vegetation Untuk Tanaman Padi (Studi Kasus : Kabupaten Karawang). [Undergraduate Thesis]. Faculty of Mathematics and Natural Sciences, Institut Pertanian Bogor.

Prasetyo, Y., Sukmono, A., Aziz, K.W., & Aji, B.J.P.S. (2018). Rice productivity prediction model design based on linear regression of spectral value using NDVI and LSWI combination on Landsat-8 imagery. IOP Conference Series: Earth and Environmental Science, 165, 012002. https://doi.org/10.1088/1755-1315/165/1/012002

Sahararini, A.F., Supriatna, & Wibowo, A. (2020). Estimation of rice productivity using Sentinel-2 imagery with NDVI algorithm in Cariu sub-district, Bogor, West Java. IOP Conference Series: Earth and Environmental Science, 481, 012056. https://doi.org/10.1088/1755-1315/481/1/012056

Saputri, D.A,, Ridwan, R., Amin, M., & Asmara, S. (2018). Analisis koefisien aliran permukaan pada berbagai bentuk penggunaan lahan dengan SWAT. Jurnal Teknik Pertanian Lampung, 7(1), 1–8. https://doi.org/10.23960/jtep-l.v7i1.1-8

Son, N.T., Chen, C.F., Chen, C.R., Minh, V.Q., & Trung, N.H. (2014). A comparative analysis of multitemporal MODIS EVI and NDVI data for large-scale rice yield estimation. Agricultural and Forest Meteorology, 197, 52–64. https://doi.org/10.1016/j.agrformet.2014.06.007

U.S. Geological Survey. (2022). Landsat Normalized Difference Vegetation Index. U.S. Geological Survey. https://www.usgs.gov/landsat-missions/landsat-normalized-difference-vegetation-index

Wahyunto, Widagdo, & Heryanto, B. (2006). Pendugaan produktivitas tanaman padi sawah melalui analisis citra satelit. Informatika Pertanian, 15, 853–869.

Wójtowicz, M., Wójtowicz, A., & Piekarczyk, J. (2016). Application of remote sensing methods in agriculture. Communications in Biometry and Crop Science, 11(1), 31–50.

Yanti, D., Mandang, T., Purwanto, M.Y.J., & Solahudin, M. (2021). Identify cropping patterns of Cihea Irrigation Area in Cianjur Regency West Java using Modis image data. ARPN Journal of Engineering and Applied Sciences, 16(13), 1371–1378.

Yunarni, W., Wahyuni, S., Hidayah, E., Halik, G., & Endah, R. (2019). Evaluasi kinerja kantong lumpur berdasarkan laju angkutan sedimen pada Bendung Talang Kabupaten Jember. Pertemuan Ilmiah Tahunan HATHI XXXVI, 2, 871–879.

Yuniarto, A.E., Prasetyo, Y., & Haniah. (2015). Analisis tingkat produktivitas padi berdasarkan metode NDVI (Normalized Difference Vegetation Index) dan LSWI (Land Surface Water Index) menggunakan citra Landsat tahun 2007 dan 2009 (Studi kasus : Kabupaten Karanganyar, Jawa Tengah ). Jurnal Geodesi Undip, 4(3), 26–34.

Yuniasih, B., Rizky, A., Adji, P., & Budi, B. (2022). Evaluation of pre-replanting oil palm plant health using the NDVI index from Landsat 8 satellite imagery. Jurnal Teknik Pertanian Lampung, 11(2), 304–313. http://dx.doi.org/10.23960/jtep-l.v11i2.304-313

Downloads

Published

2022-09-30