Vol. 13, No. 4 (2024): 1320 - 1333

http://dx.doi.org/10.23960/jtep-l.v13i4.1320-1333

TEKNIK PERTANIAN



JURNAL TEKNIK PERTANIAN LAMPUNG

ISSN 2302-559X (print) / 2549-0818 (online) Journal homepage : https://jurnal.fp.unila.ac.id/index.php/JTP

# Automated Conveyor System of Sorting and Grading for Red Chili Pepper (*Capsicum annum* L.) using Image Processing and Artificial Neural Network

Hanis Adila Lestari<sup>1</sup>, Anri Kurniawan<sup>1,⊠</sup>, Luthfi Wahab<sup>1</sup>

<sup>1</sup> Departement of Agricultural and Biosystem Engineering, Faculty of Science and Technology, Nahdlatul Ulama University of Purwokerto, INDONESIA.

| Article History:                                                                          | ABSTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Received : 29 September 2024<br>Revised : 02 November 2024<br>Accepted : 11 November 2024 | This research aims to design an automatic sorting and grading tool driven by color sensor processed through image processing and artificial neural networks (ANN). The research stage consists of data collection in a Mini Studio, image processing using ImageJ, and image                                                                                                                                                                                                                                                                             |
| Keywords:                                                                                 | classification with ANN. The automatic sorting process begins with items entering the belt, where they are processed in four phases: $(1)$ separating good and rejects chili $(2)$                                                                                                                                                                                                                                                                                                                                                                       |
| ANN,<br>Color,<br>Grading,<br>Image Processing,<br>Sorting.                               | separating red from green chili, (3) distinguishing large and small red peppers, and (4) separating large and small green peppers. Automatic sorting and grading were based on image data processed using ANN. The best activation function was tansig-logsig-purelin with MAPE 1.220, RMSE 0.010, and $R^2 = 1$ during training. During testing, the MAPE 0.158, RMSE 1.790, and $R^2 = 0.963$ . The criteria produced grade 1 (red, 10-15 cm), grade 2 (green, 10-15 cm), grade 3 (red, 5-9.99 cm), and reject grade. The quality of large red chilies |
| Corresponding Author:<br>⊠ <u>anrykurniawan1991@gmail.com</u><br>(Anri Kurniawan)         | is used as a reference for market pricing: grade 1 (IDR 60,000/kg), grade 2 (IDR 40,000/kg), and grade 3 (IDR 25.000 – 35,000). Assessing quality based on color with an automatic conveyor can reduce sorting and grading time by 70% compared to conventional methods.                                                                                                                                                                                                                                                                                 |

# 1. INTRODUCTION

The fruit vegetable, red chili pepper (*Capsicum annum L.*) adds more spiciness to food and serves as the main ingredient to make sauce and sambal (Tang *et al.*, 2023). It is one of the horticultural commodities with a high economic value and contributes largely to Indonesia's Gross Domestic Product (GDP). It is priced relatively high at IDR 150,000.00, especially at the year's end or on holy days. The data are considerably high, considering red chili pepper production in Central Java only achieves 502,838 quintals (Luthfi *et al.*, 2023). The harvested chili peppers' grade determined the price of red chili peppers in May 2024. As indicated by data from regional.kompas.com, the price of red chili peppers (grade 1) is IDR 60,000.00/kg, while green chili peppers are priced at IDR 40,000.00/kg and small red chili peppers (grade 3) are IDR 25,000.00-IDR 35,000.00/kg.

The post-harvesting period of red chili pepper is deemed critical as it is when a high level of damage may come about, i.e., 0.8%-10.6%, because of constrained facilities and farmers' knowledge about handling the post-harvesting process (Khafit *et al.*, 2023). The process consists of sorting and grading, which are crucial since the market price of the commodities is defined following their quality or grades, made up of super grade, green grade, and super small grade. Sorting and grading activities can be performed by taking into account physical, chemical, and biological factors. Among the physical factors considered are color, weight, shape, size, and content (Getahun *et al.*, 2021).

The sorting process of red chili peppers by color takes three colors into account, namely red, greenish-red, and green (Moya *et al.*, 2024), while the grading process is concerned with four grades, which are grade I, grade II, grade

III, and reject. The reject grade is given to red chili peppers with the following characteristics: small, striped, rotten, with holes, irregular in shape, and pest-and-disease affected. Grading can be performed by developing image processing and Artificial Neural Network algorithms (Khuriyati *et al.*, 2019).

The current sorting and grading of red chili peppers remain conventional by hand, which comes with several drawbacks, particularly related to the output lacking precision. Human work has limitations and often brings on negligence if conducted long on a large quantity of products (Iwan *et al.*, 2022). Accordingly, sorting and grading technologies are expected to lessen faults, engendering quicker and more accurate outputs (Shao *et al.*, 2024). A conveyor, a tool invoked in the sorting and grading process, allows for more effective and efficient performance and offers an automatic control process in its application (Akila *et al.*, 2019). Automatic grading using a conveyor can accelerate the work process by 70% compared to conventional methods.

Image processing processes images or digital images to obtain useful data for analysis, manipulation, or broad understanding. The process encompasses pra-processing, segmentation, extraction, object detection, image restoration, and image analysis (Khuriyati *et al.*, 2020). Image processing can be applied in diverse activities, e.g., inspecting fruit quality and detecting defects or damage (Ghuge *et al.*, 2023). Meanwhile, the Artificial Neural Network is a technology for classifying images to generate the desired decisions, such as on fruit maturity levels.

Research on image processing is undertaken by Sihombing *et al.* (2022) and Simanungkalit & Manurung (2024), who analyzed the application of ANN on bananas. Another relevant research is by Mohi-Alden *et al.* (2023), who deploy image processing to sort bell peppers, Subrata & Baiquni (2024), and Abubeker *et al.* (2023), who investigate red chilis. Thinh *et al.* (2020) embed image processing in the mango detecting system, while (Zhou *et al.*, 2023) employ it with a conveyor. Hendrawan *et al.* (2021) perform image processing to observe green chili maturity, while Asian *et al.* (2024) and Chen *et al.* (2024) employ it in chili pepper classification.

Based on the issues, a specific technology enabling quicker and more accurate sorting and grading with precision agriculture concepts is called for. This research focuses on designing a sorting tool, which is a mini conveyor by taking color, size (using the RGB method), and grades of red chili peppers (grades I, II, III, and reject) into account. The grading and sorting process for large red chilies is necessary to improve work efficiency, especially by using an automatic conveyor system, which can enhance productivity. In addition, it increases processing speed, ensures consistent and standardized results, reduces labor, and improves product quality in accordance with market demands.

## 2. MATERIALS AND METHODS

#### 2.1. Tools and Materials

Several exploited tools were a Redmi Note 10 Pro smartphone camera, mini studio, laptop, and control system circuit (TCS230 Color Sensor, Arduino Mega, Servo Motor, and potentiometer). Meanwhile, the conveyor was composed of a belt, DC motor, gearbox, roller, idler roller, head pulley, sensor bracket, converter, and power supply. The software leveraged was MATLAB, Arduino IDE, ImageJ, and ColorMine and Color Converter applications. The measurement tools used were a caliper, ruler, Linshang 171 colorimeter, and timer scale.

The materials utilized were red chili peppers (Pilar F1 variety) from Bojonggambar, Tasikmalaya, West Java, red chili peppers (Boostavi F1 variety) from Rempoah, Baturraden, Banyumas, Central Java, and red chili peppers (Baja F1 variety) from Penolih, Kaligondang, Purbalingga, Central Java. Red chili peppers were graded into four grades, i.e., grade I, grade II, grade III, and reject, and each grade comprised 100 samples from each village, totaling 300 samples which consisted of 201 training and 90 testing.

#### 2.2. Research Stages

#### 2.2.1. Grade of Red Chili Peppers

Red chili peppers were categorized into three colors, namely green, red, and greenish-red (Subrata *et al.*, 2022). For the green color, the R-value was 135-235, the G value was 191-337, and the B value was 181-247, while for the red one, the R-value was 135-255. The R and G values of the greenish-red color were 135-235 and 191-235, respectively (Tosi *et al.*, 2024). Table 1 displays more detailed information regarding the size and data on red chili peppers' grades.

| Donomotora | Grades     |              |            |                                 |  |  |  |
|------------|------------|--------------|------------|---------------------------------|--|--|--|
| rarameters | I          | II           | III        | Reject                          |  |  |  |
| Colors     | Red        | Green        | Red        | Red                             |  |  |  |
|            |            | Greenish-red |            | Green                           |  |  |  |
|            |            |              |            | Greenish-red                    |  |  |  |
|            |            |              |            | Blackish-red                    |  |  |  |
| Size       | > 10 cm    | > 10 cm      | 5-9.9 cm   | All sizes                       |  |  |  |
|            |            |              |            | > 20 cm                         |  |  |  |
|            |            |              |            | < 5 cm                          |  |  |  |
| Conditions | No defects | No defects   | No defects | Black, white, and brown defects |  |  |  |
|            |            |              |            | Imperfect shape                 |  |  |  |

Table 1. Chili Pepper Grade Parameters

Red chili peppers classified as reject were broken, affected by pests or diseases, small (<5 cm), irregular in shape, rotten, and striped (Harel *et al.*, 2020). Following the reference, after the post-harvesting process, ten types of red chili peppers at many different maturity levels (Figure 1) could be identified (Prayogi *et al.*, 2022).



Figure 1. Classification of chili pepper maturity: (1, 2) big red chili pepper; (3, 4) small red chili pepper; (5, 6, 7) greenish red chili pepper; (8, 9) big green chili pepper; (10) small green chili pepper



Figure 2. Mini studio design

## 2.2.2. Sampling

The sampling process was undertaken by picking classified red chili peppers and collecting data in the following steps. The Mini Studio is used with lighting at 800 lux, featuring a white background with dimensions of 45cm x 32cm x 32cm, and a smartphone camera is positioned at the top opening (Figure 2). Red chili peppers, set in a mini studio, were pictured one by one, starting from grades 1, II, and III to reject using a Redmi Note 10 Pro smartphone camera at

a resolution of 105 MP (Luthfi *et al.*, 2023). The mini studio's background should be white to optimize the light and reduce shadows. The next steps were storing the images acquired in folders tagged as Large Red Chili Peppers, Small Red Chili Peppers, Green Chili Peppers, and Reject. Figure 3 shows image processing steps.



Figure 3. Image processing flowchart

The Red, Green, and Blue (RGB) values were then identified using the RGB analyzer feature of the ImageJ application, and data on the colors were converted into Hue Saturation Values (HSV) and YCrCB values using ColorMine and Color Converter applications. Meanwhile, the L\*a\*b value was determined using a colorimeter (Hadinegoro & Rizaldilhi, 2021). The images were subsequently processed to identify chili peppers' sizes, covering their lengths and diameters, using Image Acquisition and the ROI manager. Large chili peppers came with a size of > 10 nm, while small ones had a size of 5-9.9 cm. Those of < 5 cm were categorized as reject.

## 2.2.3. Automation Sorting and Grading Design

The designing process underwent several other processes, such as literary study, problem analysis, design determination, tool testing, and evaluation. The design follows some references on conveyors utilized in sorting and grading processes, e.g., those applied by Akila *et al.* (2019), on sweet oranges (Irwan *et al.*, 2022), apples (Khafit *et al.*, 2023), curly chili peppers (Sari *et al.*, 2021), and tomatoes (Hetharua *et al.*, 2021). After a simulation using Autodesk AutoCAD 2025 was carried out, the image of automatic sorting and grading tools was produced, as pointed out in Figure 4. Automation sorting and grading of chili pepper was a mini conveyor (Figure 5) with a control system in the form of a TCS2300 color sensor input, which would detect data transferred to Arduino Mega and give commands to the output for execution (Khan *et al.*, 2023). The system outputs were two servo motors, which acted as sorters 1 and 2 and later the determiners in the sorting and grading process for red chili peppers. Sorting and grading processes were conducted in four iterations with different criteria presented in Table 2.



Figure 4. Conveyor for sorting and grading: 1) Belt, 2) DC motor and Gearbox, 3) Servo 1, 4) Servo 2, 5) Power Supply, 6) Roller, 7) Idler roller, 8) Potentiometer, 9) Sensor Bracket, 10) TCS230 Sensor, 11) Control Box, 12) Converter, 13) Adaptor Charger



Figure 5. Conveyor sorter: top view (left), and front view (right)

| No. | Process   | Input Criteria        | Sorter 1                  | Sorter 2                  |
|-----|-----------|-----------------------|---------------------------|---------------------------|
| 1   | Sorting 1 | Red chili peppers     | Red chili peppers         | Damaged chili peppers     |
|     |           | Green chili peppers   | Green chili peppers       | Striped chili peppers     |
|     |           | Striped chili peppers |                           |                           |
|     |           | Damaged chili peppers |                           |                           |
| 2   | Sorting 2 | Red chili peppers     | Red chili peppers         | Green chili peppers       |
|     |           | Green chili peppers   |                           |                           |
| 3   | Grading 1 | Red chili peppers     | Large red chili peppers   | Small red chili peppers   |
| 4   | Grading 2 | Green chili peppers   | Large green chili peppers | Small green chili peppers |

#### Table 2. Decision-making criteria

#### 2.3. Research Process

#### 2.3.1. Research Parameters

The independent variables (x) were  $x_1$  = the RED value,  $x_2$  = the GREEN value,  $x_3$  = the BLUE value, and  $x_4$  = chili peppers' length, while the dependent variables (y) included chili peppers' grades, namely grades I, II, and III. The y values not included in the three grades were categorized as reject. In the training process, the number of samples was 210 data, 90 testing data, four nodes in the input layer, four nodes in the hidden layer 1, four nodes in the hidden layer 2 nodes, and one node in the output layer 1. The learning rate value was 0.1 with the logsig, tansig, and purelin activation functions with 27 variations.



Figure 6. Architecture of the Artificial Neural Network for chili pepper sorting and grading



Figure 7. Conversion of the ANN program to Arduino process

# 2.3.2. Conversion of the ANN Program to Arduino

The completed ANN program, with obtained values for RMSE, MAPE, and the Coefficient of Determination ( $R^2$ ), is then used as a reference for the Arduino program embedded in coding within the Arduino IDE. The conversion process can be seen in Figure 7. The research process flowchart is shown in Figure 8.



Figure 8. Sorting and grading flowchart

#### 2.4. Data Analysis

Data were analyzed based on accuracy parameters using the Root Mean Square Error (RMSE), Mean Average Percentage Error (MAPE), and the coefficient of determination (R<sup>2</sup>) using Microsoft Excel 2019.

$$RMSE = \left(\frac{\sum(y_i - \hat{y}_i)}{n}\right)^{1/2}$$
(1)

MAPE = 
$$\sum_{t=1}^{n} \left| \frac{y_i - \hat{y}_i}{\hat{y}_i} \right| \times 100\%$$
 (2)

# 3. RESULTS AND DISCUSSION

## 3.1. Red Chili Pepper Image Processing

Data measurement with ImageJ consisted of two processes. To begin with, data on color for RGB value identification were collected using the polygon feature in cropping red chili pepper images. Red, Green, and Blue (RGB) values were acquired using the "RGB measure" plugin and converted into HSV, YCrCb, and L\*a\*b values to determine red chili pepper maturity rates.

The next process included data collection to measure the areas of chili peppers, with their length (cm) as the reference in the grading process. The initial steps were to set the size scale of the image, adjust the image using the Color Threshold, and brush the area of chili peppers to be measured with the red color. The ROI manager value was obtained using the wand tool applied to the area set for measurement.

| Table 3. RGB measurement results |
|----------------------------------|
|----------------------------------|

| No. | R       | G      | В      | L      | а      | b      | Y  | Cr  | Cb  | Н   | S    | V     | Length | Grade |
|-----|---------|--------|--------|--------|--------|--------|----|-----|-----|-----|------|-------|--------|-------|
| 1   | 120.837 | 48.450 | 63.755 | 30.811 | 33.136 | 6.495  | 77 | 159 | 124 | 348 | 0.60 | 0.471 | 10.804 | 1     |
| 2   | 142.598 | 57.726 | 63.810 | 36.310 | 36.540 | 14.631 | 87 | 165 | 118 | 356 | 0.60 | 0.56  | 10.970 | 1     |
| 3   | 149.132 | 65.638 | 72.902 | 39.132 | 35.796 | 12.929 | 94 | 164 | 119 | 355 | 0.56 | 0.58  | 14.315 | 1     |
| 4   | 137.822 | 59.369 | 74.679 | 36.095 | 34.994 | 73.036 | 88 | 161 | 123 | 348 | 0.57 | 0.54  | 13.699 | 1     |
| 5   | 123.448 | 50.837 | 66.685 | 31.805 | 33.194 | 6.049  | 79 | 159 | 124 | 347 | 0.59 | 0.48  | 12.975 | 1     |
| 6   | 130.179 | 47.834 | 61.374 | 32.261 | 36.641 | 10.318 | 79 | 163 | 122 | 350 | 0.64 | 0.51  | 12.465 | 1     |
| 7   | 140.016 | 51.123 | 63.957 | 34.651 | 38.839 | 12.209 | 84 | 166 | 120 | 352 | 0.64 | 0.55  | 12.928 | 1     |
| 8   | 135.076 | 68.470 | 85.300 | 37.859 | 30.334 | 30.353 | 93 | 156 | 126 | 345 | 0.50 | 0.53  | 11.576 | 1     |
| 9   | 130.034 | 57.616 | 72.312 | 34.412 | 32.733 | 6.258  | 85 | 159 | 124 | 348 | 0.56 | 0.51  | 12.378 | 1     |
| 10  | 136.608 | 69.024 | 83.489 | 38.158 | 30.383 | 4.634  | 94 | 156 | 124 | 347 | 0.49 | 0.53  | 11.612 | 1     |
| 11  | 140.211 | 67.920 | 80.182 | 38.376 | 31.971 | 7.099  | 94 | 159 | 123 | 349 | 0.52 | 0.55  | 11.393 | 1     |
| 12  | 130.333 | 57.416 | 68.515 | 34.321 | 32.531 | 8.573  | 85 | 159 | 122 | 351 | 0.56 | 0.51  | 11.846 | 1     |
| 13  | 132.592 | 50.853 | 66.539 | 33.367 | 36.539 | 8.569  | 82 | 163 | 123 | 348 | 0.62 | 0.52  | 14.636 | 1     |
| 14  | 125.424 | 48.127 | 64.167 | 31.551 | 35.040 | 7.383  | 79 | 161 | 124 | 348 | 0.62 | 0.49  | 14.696 | 1     |
| 15  | 131.438 | 46.055 | 61.962 | 32.182 | 38.000 | 9.861  | 79 | 164 | 122 | 349 | 0.65 | 0.51  | 14.511 | 1     |
| 16  | 151.982 | 61.784 | 72.919 | 38.856 | 38.800 | 12.614 | 93 | 167 | 120 | 353 | 0.60 | 0.59  | 12.628 | 1     |
| 17  | 139.154 | 69.985 | 86.756 | 38.838 | 31.242 | 3.609  | 95 | 158 | 125 | 345 | 0.50 | 0.55  | 13.238 | 1     |
| 18  | 136.572 | 66.382 | 83.050 | 37.570 | 31.767 | 4.067  | 92 | 158 | 125 | 345 | 0.52 | 0.53  | 12.618 | 1     |
| 19  | 124.002 | 46.797 | 61.157 | 30.975 | 34.876 | 8.507  | 77 | 161 | 123 | 348 | 0.63 | 0.49  | 11.686 | 1     |
| 20  | 122.870 | 57.601 | 71.017 | 33.227 | 29.846 | 5.249  | 83 | 156 | 125 | 347 | 0.53 | 0.48  | 11.265 | 1     |
| 21  | 128.318 | 61.486 | 79.318 | 35.148 | 30.837 | 2.788  | 87 | 156 | 126 | 344 | 0.52 | 0.5   | 13.513 | 1     |
| 22  | 146.035 | 71.520 | 85.367 | 40.162 | 32.851 | 6.509  | 98 | 160 | 123 | 349 | 0.51 | 0.57  | 12.915 | 1     |
| 23  | 133.254 | 54.368 | 69.969 | 34.235 | 35.369 | 7.589  | 84 | 162 | 123 | 349 | 0.59 | 0.52  | 12.106 | 1     |
| 24  | 126.536 | 51.962 | 67.835 | 32.578 | 33.888 | 6.470  | 81 | 160 | 124 | 347 | 0.60 | 0.49  | 11.856 | 1     |
| 25  | 130.185 | 68.595 | 83.592 | 37.116 | 28.149 | 2.949  | 92 | 154 | 125 | 345 | 0.48 | 0.510 | 12.265 | 1     |
| 26  | 122.688 | 44.223 | 58.368 | 30.194 | 35.393 | 9.218  | 78 | 161 | 123 | 328 | 0.64 | 0.48  | 11.509 | 1     |
| 27  | 131.422 | 53.738 | 68.467 | 33.766 | 34.856 | 7.852  | 83 | 161 | 123 | 348 | 0.60 | 0.51  | 11.694 | 1     |
| 28  | 136.810 | 69.114 | 83.181 | 38.199 | 30.372 | 4.891  | 94 | 156 | 124 | 347 | 0.49 | 0.53  | 11.457 | 1     |
| 29  | 138.170 | 54.014 | 59.740 | 34.764 | 36.391 | 15.005 | 84 | 165 | 118 | 356 | 0.61 | 0.54  | 10.899 | 1     |
| 30  | 131.655 | 60.408 | 80.008 | 35.463 | 32.769 | 2.868  | 88 | 158 | 126 | 343 | 0.54 | 0.51  | 10.313 | 1     |
| 31  | 36.946  | 54.842 | 53.730 | 21.482 | -7.519 | -1.649 | 58 | 120 | 130 | 177 | 0.33 | 0.21  | 10.724 | 2     |
| 32  | 47.988  | 69.391 | 77.132 | 28.035 | -6.089 | -7.329 | 70 | 118 | 135 | 196 | 0.39 | 0.3   | 12.688 | 2     |

Table 3. RGB measurement results (continued)

| No. | R       | G      | В      | L      | a       | b      | Y  | Cr  | Cb  | Н   | S    | V     | Length | Grade |
|-----|---------|--------|--------|--------|---------|--------|----|-----|-----|-----|------|-------|--------|-------|
| 33  | 41.908  | 64.989 | 71.506 | 25.954 | -7.002  | -6.817 | 66 | 117 | 134 | 194 | 0.42 | 0.28  | 12.422 | 2     |
| 34  | 34.800  | 60.849 | 62.665 | 23.772 | -9.393  | -4.274 | 61 | 116 | 133 | 184 | 0.45 | 0.24  | 12.336 | 2     |
| 35  | 31.484  | 54.066 | 61.729 | 21.163 | -6.426  | -7.582 | 57 | 117 | 134 | 194 | 0.49 | 0.24  | 12.675 | 2     |
| 36  | 30.301  | 55.252 | 54.209 | 21.227 | -9.939  | -2.396 | 57 | 117 | 131 | 178 | 0.46 | 0.22  | 11.853 | 2     |
| 37  | 30.470  | 54.878 | 55.477 | 21.149 | -9.262  | -3.371 | 56 | 117 | 132 | 182 | 0.46 | 0.22  | 12.838 | 2     |
| 38  | 37.564  | 61.469 | 64.547 | 24.219 | -8.318  | -4.842 | 63 | 117 | 133 | 187 | 0.42 | 0.25  | 11.584 | 2     |
| 39  | 34.749  | 56.899 | 60.101 | 22.290 | -7.715  | -4.767 | 59 | 118 | 133 | 189 | 0.43 | 0.24  | 10.938 | 2     |
| 40  | 34.355  | 53.124 | 57.925 | 20.860 | -6.091  | -5.439 | 57 | 119 | 133 | 190 | 0.40 | 0.22  | 11.346 | 2     |
| 41  | 35.188  | 54.148 | 52.226 | 21.067 | -8.146  | -1.253 | 57 | 120 | 130 | 174 | 0.35 | 0.21  | 10.434 | 2     |
| 42  | 33.591  | 50.338 | 52.409 | 19.618 | -6.222  | -3.532 | 55 | 120 | 131 | 186 | 0.37 | 0.2   | 13.257 | 2     |
| 43  | 38.728  | 63.194 | 64.933 | 24.901 | -8.896  | -4.075 | 64 | 117 | 132 | 182 | 0.41 | 0.251 | 12.773 | 2     |
| 44  | 37.120  | 65.002 | 67.006 | 25.508 | -9.902  | -4.550 | 65 | 116 | 133 | 184 | 0.45 | 0.26  | 12.264 | 2     |
| 45  | 34.086  | 58.586 | 64.650 | 23.015 | -7.574  | -6.738 | 60 | 117 | 134 | 192 | 0.47 | 0.25  | 12.520 | 2     |
| 46  | 34.414  | 60.191 | 57.259 | 23.328 | -1.073  | -1.324 | 61 | 117 | 131 | 173 | 0.43 | 0.24  | 11.538 | 2     |
| 47  | 31.565  | 53.807 | 55.117 | 20.818 | -8.338  | -3.611 | 56 | 118 | 132 | 185 | 0.44 | 0.22  | 11.677 | 2     |
| 48  | 38.180  | 62.052 | 62.240 | 24.376 | -9.165  | -3.071 | 63 | 117 | 132 | 180 | 0.39 | 0.24  | 11.494 | 2     |
| 49  | 33.914  | 57.007 | 56.861 | 22.159 | -9.043  | -2.786 | 59 | 118 | 131 | 178 | 0.42 | 0.22  | 10.760 | 2     |
| 50  | 34.908  | 53.504 | 58.985 | 21.071 | -5.821  | -5.839 | 57 | 119 | 133 | 192 | 0.41 | 0.23  | 11.675 | 2     |
| 51  | 38.033  | 53.203 | 51.092 | 20.894 | -6.794  | -0.713 | 57 | 122 | 129 | 172 | 0.28 | 0.21  | 10.313 | 2     |
| 52  | 50.977  | 75.085 | 81.783 | 30.286 | -7.284  | -6.933 | 75 | 117 | 134 | 192 | 0.38 | 0.32  | 12.453 | 2     |
| 53  | 30.761  | 51.292 | 57.751 | 19.979 | -6.148  | -6.669 | 55 | 118 | 134 | 193 | 0.47 | 0.22  | 13.742 | 2     |
| 54  | 33.921  | 51.569 | 59.081 | 20.334 | -4.856  | -7.021 | 56 | 120 | 134 | 198 | 0.44 | 0.23  | 12.323 | 2     |
| 55  | 33.213  | 56.867 | 60.143 | 22.188 | -8.183  | -4.958 | 59 | 118 | 133 | 189 | 0.45 | 0.24  | 12.600 | 2     |
| 56  | 37.472  | 64.827 | 68.465 | 25.521 | -9.238  | -5.491 | 64 | 116 | 134 | 188 | 0.46 | 0.27  | 13.152 | 2     |
| 57  | 34.505  | 61.290 | 67.818 | 24.104 | -8.140  | -7.208 | 62 | 116 | 135 | 191 | 0.49 | 0.263 | 11.847 | 2     |
| 58  | 45.694  | 71.542 | 74.380 | 28.509 | -8.984  | -4.846 | 71 | 116 | 133 | 186 | 0.39 | 0.290 | 12.020 | 2     |
| 59  | 40.232  | 64.968 | 62.712 | 25.528 | -10.131 | -1.667 | 65 | 118 | 131 | 175 | 0.38 | 0.25  | 11.076 | 2     |
| 60  | 28.160  | 49.156 | 52.394 | 18.844 | -7.333  | -4.715 | 53 | 119 | 132 | 188 | 0.46 | 0.2   | 11.345 | 2     |
| 61  | 135.286 | 69.369 | 87.533 | 38.152 | 30.210  | 2.057  | 94 | 156 | 126 | 344 | 0.49 | 0.53  | 9.675  | 3     |
| 62  | 138.702 | 71.200 | 90.668 | 39.147 | 30.913  | 1.597  | 96 | 156 | 126 | 343 | 0.49 | 0.54  | 8.892  | 3     |
| 63  | 141.750 | 69.979 | 88.825 | 39.284 | 32.492  | 3.005  | 96 | 158 | 126 | 344 | 0.51 | 0.55  | 8.606  | 3     |
| 64  | 125.963 | 66.354 | 88.880 | 36.157 | 28.542  | -1.869 | 90 | 152 | 129 | 338 | 0.47 | 0.490 | 8.513  | 3     |
| 65  | 143.945 | 72.828 | 91.004 | 40.283 | 32.044  | 3.127  | 98 | 158 | 126 | 344 | 0.50 | 0.56  | 8.037  | 3     |
| 66  | 133.921 | 68.131 | 88.414 | 37.705 | 30.498  | 0.828  | 93 | 155 | 127 | 342 | 0.49 | 0.52  | 7.155  | 3     |
| 67  | 134.122 | 66.865 | 85.697 | 37.378 | 30.911  | 2.072  | 92 | 157 | 126 | 343 | 0.51 | 0.53  | 7.199  | 3     |
| 68  | 123.080 | 64.171 | 85.309 | 35.130 | 28.157  | -1.157 | 88 | 152 | 128 | 339 | 0.48 | 0.48  | 6.555  | 3     |
| 69  | 124.776 | 64.212 | 80.189 | 35.234 | 28.067  | 2.287  | 88 | 153 | 126 | 344 | 0.48 | 0.49  | 5.515  | 3     |
| 70  | 135.690 | 66.497 | 83.628 | 37.476 | 31.441  | 3.551  | 92 | 157 | 125 | 345 | 0.51 | 0.53  | 9.632  | 3     |
| 71  | 141.979 | 71.890 | 89.998 | 39.761 | 31.685  | 29.646 | 97 | 157 | 126 | 345 | 0.50 | 0.55  | 8.831  | 3     |
| 72  | 143.265 | 70.447 | 88.627 | 39.605 | 32.782  | 3.622  | 97 | 159 | 125 | 345 | 0.51 | 0.56  | 8.512  | 3     |
| 73  | 126.778 | 64.746 | 85.365 | 35.807 | 29.253  | -0.138 | 89 | 154 | 128 | 340 | 0.49 | 0.49  | 8.616  | 3     |
| 74  | 145.888 | 71.828 | 88.255 | 40.282 | 32.976  | 4.878  | 98 | 159 | 125 | 346 | 0.51 | 0.49  | 8.006  | 3     |
| 75  | 138.892 | 69.409 | 87.005 | 38.681 | 31.491  | 3.222  | 95 | 157 | 126 | 344 | 0.50 | 0.54  | 7.108  | 3     |
| 76  | 133.644 | 63.964 | 81.864 | 36.573 | 31.826  | 3.326  | 90 | 157 | 126 | 345 | 0.53 | 0.52  | 7.156  | 3     |
| 77  | 124.272 | 61.794 | 80.928 | 34.643 | 29.335  | 0.949  | 86 | 154 | 127 | 342 | 0.51 | 0.49  | 6.671  | 3     |
| 78  | 128.671 | 65.268 | 80.115 | 36.049 | 28.976  | 3.585  | 89 | 155 | 125 | 342 | 0.49 | 0.5   | 5.534  | 3     |
| 79  | 135.911 | 63.131 | 84.128 | 36.815 | 33.412  | 2.285  | 91 | 158 | 127 | 342 | 0.53 | 0.53  | 9.043  | 3     |
| 80  | 143.050 | 66.066 | 85.898 | 38.583 | 34.713  | 3.859  | 94 | 160 | 125 | 345 | 0.54 | 0.56  | 8.967  | 3     |
| 81  | 144.292 | 64.030 | 80.938 | 38.233 | 35.661  | 6.509  | 93 | 162 | 123 | 348 | 0.56 | 0.57  | 8.599  | 3     |
| 82  | 134.434 | 60.375 | 82.466 | 35.968 | 34.124  | 2.086  | 89 | 159 | 127 | 342 | 0.55 | 0.53  | 7.437  | 3     |
| 83  | 137.466 | 70.443 | 93.194 | 38.877 | 31.212  | -0.401 | 96 | 156 | 128 | 339 | 0.49 | 0.54  | 6.627  | 3     |
| 84  | 132.951 | 60.382 | 81.364 | 35.702 | 33.435  | 2.374  | 88 | 158 | 127 | 342 | 0.55 | 0.52  | 7.297  | 3     |
| 85  | 140.456 | 66.342 | 86.738 | 38.262 | 33.708  | 2.815  | 94 | 159 | 126 | 344 | 0.53 | 0.55  | 6.875  | 3     |
| 86  | 131.859 | 77.944 | 97.837 | 39.938 | 25.505  | -1.834 | 98 | 150 | 129 | 338 | 0.41 | 0.51  | 7.965  | 3     |
| 87  | 124.755 | 52.995 | 70.007 | 32.546 | 32.930  | 4.973  | 81 | 158 | 125 | 345 | 0.58 | 0.49  | 7.273  | 3     |
| 88  | 128.822 | 58.608 | 76.092 | 34.527 | 32.190  | 3.969  | 86 | 157 | 126 | 345 | 0.55 | 0.5   | 6.171  | 3     |
| 89  | 120.802 | 65.508 | 85.559 | 35.112 | 26.550  | -1.382 | 88 | 151 | 129 | 338 | 0.46 | 0.47  | 5.232  | 3     |
| 90  | 135.479 | 66.665 | 79.178 | 37.358 | 30.718  | 6.187  | 92 | 157 | 123 | 349 | 0.51 | 0.53  | 5.755  | 3     |

## 3.2. Artificial Neural Network on Chili Peppers

The training and testing processes on chili pepper data were carried out using MATLAB to separate the criteria of grades I, II, and III using logsig, tansig, and purelin activation functions with 27 variations to acquire the desired results, as suggested in Table 4. The best activation function, as demonstrated in Table 4, was tansig-logsig-purelin. Tansig (hyperbolic tangent) transforms input values to a range of -1 to 1, with a symmetric function at the origin (0.0), resulting in positive values with better signal magnitude. On the other hand, logsig (logistic sigmoid) has flexibility with a range between 0 and 1, making it very suitable for classification expressed in probabilities. Purelin (linear) functions in the output layer handle regression values without limits, facilitating interpretation and computational efficiency. The use of the tansig-logsig-purelin combination is more effective in enhancing ANN performance than other activation functions due to the stability of the training process during backpropagation.

| No   | Activation Functions    |         | Training |                | Testing |         |                |  |
|------|-------------------------|---------|----------|----------------|---------|---------|----------------|--|
| 110. | Activation Functions    | MAPE    | RMSE     | R <sup>2</sup> | MAPE    | RMSE    | R <sup>2</sup> |  |
| 1    | logsig-logsig-logsig    | 1.400   | 0.010    | 1.000          | 3.880   | 0.229   | 0.9891         |  |
| 2    | logsig-logsig-purelin   | 1.218   | 0.007    | 1.000          | 2.114   | 0.194   | 0.992          |  |
| 3    | logsig-logsig-tansig    | 1.160   | 0.000    | 1.000          | 1.797   | 0.163   | 0.994          |  |
| 4    | logsig-tansig-logsig    | 1.310   | 0.009    | 1.000          | 2.396   | 0.210   | 0.991          |  |
| 5    | logsig-purelin-logsig   | 1.361   | 0.011    | 1.000          | 2.022   | 0.144   | 0.997          |  |
| 6    | tansig-logsig-logsig    | 1.350   | 0.009    | 1.000          | 2.683   | 0.213   | 0.991          |  |
| 7    | purelin-logsig-logsig   | 1.350   | 0.009    | 1.000          | 2.683   | 0.213   | 0.991          |  |
| 8    | tansig-tansig-tansig    | 1.277   | 0.008    | 1.000          | 1.059   | 0.079   | 0.999          |  |
| 9    | tansig-tansig-purelin   | 1.190   | 0.005    | 1.000          | 1.637   | 0.148   | 0.995          |  |
| 10   | tansig-tansig-logsig    | 1.459   | 0.009    | 1.000          | 1.790   | 0.141   | 0.996          |  |
| 11   | tansig-purelin-tansig   | 126.000 | 1.581    | N/A            | 108.330 | 1.581   | N/A            |  |
| 12   | tansig-logsig-tansig    | 1.126   | 0.004    | 1.000          | 2.250   | 0.210   | 0.9907         |  |
| 13   | purelin-tansig-tansig   | 1.580   | 126.000  | N/A            | ERR     | 108.330 | N/A            |  |
| 14   | logsig-tansig-tansig    | 1.261   | 0.006    | 1.000          | 2.220   | 0.191   | 0.992          |  |
| 15   | purelin-purelin-purelin | 19.379  | 0.369    | 0.971          | 14.070  | 0.380   | 0.969          |  |
| 16   | purelin-purelin-tansig  | 23.860  | 0.420    | 0.964          | 0.447   | 18.180  | 0.957          |  |
| 17   | purelin-purelin-logsig  | 20.390  | 0.370    | 0.972          | 14.530  | 0.3768  | 0.970          |  |
| 18   | purelin-tansig-purelin  | 1.190   | 0.010    | 1.000          | 2.110   | 0.196   | 0.992          |  |
| 19   | purelin-logsig-purelin  | 1.170   | 0.010    | 1.000          | 0.180   | 1.950   | 0.993          |  |
| 20   | tansig-purelin-purelin  | 1.290   | 0.010    | 1.000          | 2.060   | 2.060   | 0.993          |  |
| 21   | logsig-purelin-purelin  | 1.270   | 0.010    | 1.000          | 2.640   | 0.222   | 0.990          |  |
| 22   | tansig-purelin-logsig   | 1.480   | 0.010    | 1.000          | 2.310   | 0.145   | 0.997          |  |
| 23   | tansig-logsig-purelin   | 1.220   | 0.010    | 1.000          | 0.158   | 1.790   | 0.995          |  |
| 24   | logsig-purelin-tansig   | 1.640   | 0.010    | 1.000          | 2.870   | 0.178   | 0.996          |  |
| 25   | purelin-tansig-logsig   | 1.640   | 0.010    | 1.000          | 44.440  | 1.290   | 0.643          |  |
| 26   | purelin-logsig-tansig   | 126.000 | 1.580    | N/A            | 108.330 | 1.581   | N/A            |  |
| 27   | logsig-tansig-purelin   | 1.350   | 0.010    | 1.000          | 2.340   | 0.200   | 0.992          |  |

Table 4. ANN training and testing result

A better view of the results is exhibited in the chart of the correlation between treatments. MAPE and RMSE values were 1.220 and 0.010 in training, respectively, and were 0.158 and 1.790 in testing, respectively. The higher Mean Absolute Percentage Error (MAPE) compared to other activation functions is caused by both internal and external factors. Overfitting results in higher MAPE, especially if the configuration causes the model to focus too much on noise rather than the actual pattern. External factors that can impact the model include image quality and sensor accuracy, which may reduce model accuracy. This highlights that selecting the appropriate activation function can enhance model performance and reduce MAPE (Hwang & Kim, 2023). The coefficients of determination (R<sup>2</sup>) are displayed in Figures 9 and 10. The coefficient of regression (R<sup>2</sup>) for training was perfect at 1, while that for testing was 0.963, close to 1. It was then concluded that the coefficients of regression for training and testing had good activation functions; hence the chili pepper sorting and grading processes were feasible to be conducted. The results of the process of sorting chili peppers using the conveyor are indicated in Table 5.





Figure 9. Observation vs Prediction at ANN training



| No. | Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Label       | Result    | Status                       |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|------------------------------|
| 1   | Ly and the r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Large red   | Grade I   | Sorter 1, sorter 1, sorter 1 |
| 2   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Large red   | Grade I   | Sorter 1, sorter 1, sorter 1 |
| 3   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Small red   | Grade III | Sorter 1, sorter 1, sorter 2 |
| 4   | and the second s | Small red   | Grade III | Sorter 1, sorter 1, sorter 2 |
| 5   | No. of Concession, Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Large green | Grade II  | Sorter 1, sorter 2, sorter 1 |
| 6   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Large green | Grade II  | Sorter 1, sorter 2, sorter 1 |
| 7   | 1 4 4 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Small green | Grade II  | Sorter 1, sorter 2, sorter 2 |
| 8   | 11 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Small green | Grade II  | Sorter 1, sorter 2, sorter 2 |
| 9   | 11 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Striped     | Reject    | Sorter 2                     |
| 10  | - Contraction of the Contraction | Striped     | Reject    | Sorter 2                     |
| 11  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Damaged     | Reject    | Sorter 2                     |
| 12  | and the second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Damaged     | Reject    | Sorter 2                     |
| 13  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Damaged     | Reject    | Sorter 2                     |
| 14  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Damaged     | Reject    | Sorter 2                     |

Table 5. Training and Testing Results

Process of conversion ANN to Arduino caried out with the following steps. First, Train the ANN model on a computer using Sublime Text with Python, utilizing RGB, HSV, and YCrCb color data as model input. Conduct

training and save the weights and biases from each model to be implemented in Arduino. Second, Extract the ANN model parameters by obtaining the trained ANN weights and biases in matrix form for use in Arduino code, using activation functions (tansig, logsig, and purelin). Third, Code the ANN in Arduino IDE in C<sup>++</sup>, following the previously established architecture. Fourth, Integrate the TCS3200 color sensor and servo with Arduino, providing RGB, HSV, and YCrCb values as input to classify the placement of chili peppers on two servos.

# **3.3. Electronics Designing**

Electronics designing was conducted after image processing and ANN processes were completed, RGB, HSV, YCrCb, and L\*a\*b values were obtained, and data were input to Arduino Mega to train the TCS230 color sensor. Electronics components were composed of the TCS230 color sensor, Arduino Mega microcontroller, two servo motors, and breadboard connected to the jumper wire.

# 3.4. Conveyor Application

The conveyor for sorting and grading red chili peppers was 150 cm in length and 15 cm in width (Figure 11). Meanwhile, the sensor bracket was 30 cm long, and the sorters' length was 50 cm. The material was acrylic, printed with a 3D printer, and some were cut using a mini grinder. The belt's material was white food-grade PU. The drive was a DC motor connected to a gearbox using two rollers plus an idler. The belt was speed-adjustable using a potentiometer, helping create no buildup during sorting and grading processes. The conveyor's outputs came only with two criteria adjustable by conditions.



Figure 11. Conveyor sorting for chili pepper

# **3.5. Sorting and Grading Processes**

The sorting process was initiated by sorting all chili peppers mixed and categorizing them into two criteria, i.e., red and green chili peppers were input to sorter 1, while striped or damaged ones were input to sorter 2. Subsequently, chili peppers input to sorter 1 were again sorted to separate red and green ones to go to sorters 1 and 2, respectively. The grading process was performed to separate red chili peppers by size, namely large red chili peppers going to sorter 1 while small ones going to sorter 2. The grading process of green chili peppers was also undertaken using the conveyor, in which large ones were input to sorter 1, while small ones were input to sorter 2. Sorted and graded chili peppers to be sold could be determined for their prices following defined criteria.

The sorting process is done with only 2 servos, selecting only 2 categories for differentiation. However, if all items need to be separated immediately, another conveyor with a different function is required, with 4 categories for the test. The sorting and grading process is based on RGB, HSV, and YCrCb color and size classification, which is then input into ANN programming logic to detect red chili, green chili, and reject items. Once the best program is determined, it is

| Test | Status      | Servo 1           | Servo 2           |
|------|-------------|-------------------|-------------------|
| 1    | All chilies | Good chili        | Reject            |
| 2    | Good chili  | Red chili         | Green chili       |
| 3    | Red chili   | Large red chili   | Small red chili   |
| 4    | Green chili | Large green chili | Small green chili |

Table 6. Sorting and grading process of chilies on the conveyor

is converted to Arduino as an automatic code to control two servos based on objects detected by the TCS3200 sensor. The conveyor moves continuously, and the servos will activate when the detected object meets the predefined conditions set in the Arduino program.

#### 4. CONCLUSION

The conveyor for automatic sorting and grading was image data-based with RGB values converted into HSV, YCrCb, and L\*a\*b for color identification and the ROI manager for size classification. The best activation function was tansiglogsig-purelin. The MAPE value was 1.220, RMSE was 0.010, and R<sup>2</sup> was 1 for training, while for testing, MAPE, RMSE, and R<sup>2</sup> values were 0.158, 1.790, and 0.963, respectively. The conveyor was 150 cm in length and 15 cm in width, adjusting to the length of red chili peppers. The produced criteria were grade I (red, 10-15 cm), grade II (green, 10-15 cm), and grade III (red, 5-9.99 cm), while unidentified ones were classified into grade reject. This system can also be applied to other crop commodities where quality and price are determined by color, such as tomatoes, bell peppers, curly chili peppers, bananas, apples, papayas, mangoes, and other types of horticultural products.

# ACKNOWLEDGMENTS

The authors thanked the funder for the Beginner Lecturer Research (PDP) held by DRTPM Kemendikbudristekdikti 2004 contract number 0459/E5/PG.02.00/2024.

## REFERENCES

- Abubeker, K.M., Abhijit., Akhil, S., Kumar, V.K.A., & Jose, B.K. (2023). Computer vision assisted real-time bird eye chili classification using YOLO V5 framework. *Journal of Artificial Intelligence and Technology*, 4(3), 265-271. <u>https://doi.org/10.37965/jait.2023.0251</u>
- Akila, K., Sabitha, B., Balamurugan, K., Balaji, K., & Gourav, A. (2019). Mechatronics system design for automated chilli segregation. *International Journal of Innovative Technology and Exploring Engineering (IJITEE)*, 8(8S), 546–550. <u>https://www.ijitee.org/wp-content/uploads/papers/v8i8s/H10910688S19.pdf</u>
- Asian, J., Arianti, N.D., Ariefin., & Muslih, M. (2024). Comparison of feature extraction and auto-preprocessing for chili pepper (*Capsicum Frutescens*) quality classification using machine learning. *IAES International Journal of Artificial Intelligence*, 13(1), 319–328. <u>https://doi.org/10.11591/ijai.v13.i1.pp319-328</u>
- Chen, H., Zhang, R., Peng, J., Peng, H., Hu, W., Wang, Y., & Jiang, P. (2024). YOLO-chili: An efficient lightweight network model for localization of pepper picking in complex environments. *Applied Sciences*, 14(13). <u>https://doi.org/10.3390/app14135524</u>
- Getahun, E., Delele, M.A., Gabbiye, N., Fanta, S.W., & Vanierschot, M. (2021). Studying the drying characteristics and quality attributes of chili pepper at different maturity stages: Experimental and mechanistic model. *Case Studies in Thermal Engineering*, 26. <u>https://doi.org/10.1016/j.csite.2021.101052</u>
- Ghuge, S., Rathore, H., Ghayal, G., Ghorpade, S., & Mangate, L. (2023). Smart segregation system for fruit ripeness. E3S Web of Conferences, 469. <u>https://doi.org/10.1051/e3sconf/202346900008</u>
- Hadinegoro, A., & Rizaldilhi, D.A. (2021). Pengaruh HSV pada pengolahan citra untuk kematangan buah cabai. Building of Informatics, Technology and Science (BITS), 3(3), 155–163. <u>https://doi.org/10.47065/bits.v3i3.1020</u>
- Harel, B., van Essen, R., Parmet, Y., & Edan, Y. (2020). Viewpoint analysis for maturity classification of sweet peppers. Sensors, 20(13), 1–22. <u>https://doi.org/10.3390/s20133783</u>

- Hendrawan, Y., Rohmatulloh, B., Prakoso, I., Liana, V., Fauzy, M.R., Damayanti, R., Hermanto, M.B., Al Riza, D.F., & Sandra. (2021). Classification of large green chilli maturity using deep learning. *IOP Conference Series: Earth and Environmental Science*, 924, 012009. https://doi.org/10.1088/1755-1315/924/1/012009
- Hetharua, A.D., Sumarno, S., Gunawan, I., Hartama, D., & Kirana, I.O. (2021 Alat penyortir buah tomat berdasarkan warna berbasis mikrokontroller arduino. Jurnal Penelitian Inovatif, 1(2), 119–130. <u>https://doi.org/10.54082/jupin.18</u>
- Hwang, S.Y., & Kim, J.J. (2023). A universal activation function for deep learning. Computers, Materials and Continua, 75(2), 3553–3569. <u>https://doi.org/10.32604/cmc.2023.037028</u>
- Iwan, I., Lahming, L., Jamaluddin, J., & Lestari, N. (2022). Rancang bangun mesin sortasi buah jeruk manis berdasarkan warna berbasis arduino nano. Jurnal Pendidikan Teknologi Pertanian, 8(1), 1. <u>https://doi.org/10.26858/jptp.v8i1.19297</u>
- Khafit, M.N., Khamdi, N., Jaenudin, J., & Edilla, E. (2023). Design and development of an apple sorting machine based on size and color differences using arduino microcontroller. *JTEV (Jurnal Teknik Elektro Dan Vokasional)*, 9(1), 147. <u>https://doi.org/10.24036/jtev.v9i1.122935</u>
- Khan, A., Hassan, T., Shafay, M., Fahmy, I., Werghi, N., Mudigansalage, S., & Hussain, I. (2023). Tomato maturity recognition with convolutional transformers. *Scientific Reports*, 13(1). <u>https://doi.org/10.1038/s41598-023-50129-w</u>
- Khuriyati, N., Nugroho, D.A., & Wicaksono, N.A. (2020). Quality assessment of chilies (*Capsicum annuum L.*) by using a smartphone camera. *IOP Conference Series: Earth and Environmental Science*, 425, 012040. <u>https://doi.org/10.1088/1755-1315/425/1/012040</u>
- Khuriyati, N., Pamungkas, A.P., & Agung, A.P. (2019). The sorting and grading of red chilli peppers (*Capsicum annuum L.*) using digital image processing. SSRG Seven Sense Research Group, 6(4), 17–23. <u>https://doi.org/10.14445/23942568/IJAES-V6I4P104</u>
- Luthfi, A., Sari, A.M., Dewi, G.R., Dwijayanti, Y., Satya, T.P., Sari, A.R., & Anoraga, S.B. (2023). Determination of maturity classification and quality of large red chili (*Capsicum annuum L.*) using color grab application. *Agrointek: Jurnal Teknologi Industri Pertanian*, 17(2), 288–294.
- Mohi-Alden, K., Omid, M., Firouz, M.S., & Nasiri, A. (2023). A machine vision-intelligent modelling-based technique for in-line bell pepper sorting. *Information Processing in Agriculture*, 10(4), 491–503. <u>https://doi.org/10.1016/j.inpa.2022.05.003</u>
- Moya, V., Quito, A., Pilco, A., Vásconez, J. P., & Vargas, C. (2024). Crop detection and maturity classification using a YOLOv5based image analysis. *Emerging Science Journal*, 8(2), 496–512. <u>https://doi.org/10.28991/ESJ-2024-08-02-08</u>
- Prayogi, A., Pardede, A.M.H., & Lumbanbatu, K. (2022). Image processing detecting chili fruit based on maturity level using backpropagation method. *International Journal of Health, Engineering and Technology*, 1(3). https://doi.org/10.55227/ijhet.v1i3.63
- Sari, E.I., Suhada., Anggraini, F., Hartama, D., & Kirana, I.O. (2021). Prototype alat pengecekan dan penyortir kesegaran cabai berdasarkan warna menggunakan sensor Tcs230 berbasis arduino. *BEES: Bulletin of Electrical and Electronics Engineering*, 2(1), 1–6. <u>https://doi.org/10.47065/bees.v2i1.762</u>
- Shao, Y., Ji, S., Xuan, G., Ren, Y., Feng, W., Jia, H., Wang, Q., & He, S. (2024). Detection and analysis of chili pepper root rot by hyperspectral imaging technology. *Agronomy*, 14(1), 226. <u>https://doi.org/10.3390/agronomy14010226</u>
- Sihombing, Y.F., Septiarini, A., Kridalaksana, A.H., & Puspitasari, N. (2022). Chili classification using shape and color features based on image processing. *Scientific Journal of Informatics*, **9**(1), 42–50. <u>https://doi.org/10.15294/sji.v9i1.33658</u>
- Simanungkalit, F.J., & Manurung, H. (2024). Artificial neural network model to predict °brix and ph of banana based on color parameters. Jurnal Teknik Pertanian Lampung, 13(3), 739-749. <u>https://doi.org/10.23960/jtep-1.v13i3.739-749</u>
- Subrata, I.D.M., & Baiquni, A.D. (2024). Application of Stereo Vision to Control the Movement of the Robot Arm Towards the Position of Red Chilies. Jurnal Teknik Pertanian Lampung, 13(3), 615-627. <u>https://doi.org/10.23960/jtep-l.v13i3.615-627</u>
- Subrata, I.D.M., Ramadhan, A.Z., & Sutejo, A. (2022). Development of cherry tomato quality detection system based on color using TCS230 optical sensor. Jurnal Ilmiah Rekayasa Pertanian dan Biosistem, 10(2), 171–183. <u>https://doi.org/10.29303/jrpb.v10i2.389</u>
- Tang, R., Supit, I., Hutjes, R., Zhang, F., Wang, X., Chen, X., Zhang, F., & Chen, X. (2023). Modelling growth of chili pepper (*Capsicum annuum L.*) with the WOFOST model. *Agricultural Systems*, 209. <u>https://doi.org/10.1016/j.agsy.2023.103688</u>

- Thinh, N.T., Thong, N.D., & Cong, H.T. (2020). Sorting and classification of mangoes based on artificial intelligence. *International Journal of Machine Learning and Computing*, **10**(2), 374–380.
- Tosi, R.B., Mbura, H.D., & Kaesmetan, Y.R. (2024). Implementasi CNN dalam mengidentifikasi kematangan cabai berdasarkan warna. *INDOTECH Indonesian Journal of Education And Computer Science*, **2**(1), 34–42. https://doi.org/10.60076/indotech.v2i1.385
- Zhou, Z., Zahid, U., Majeed, Y., Nisha, Mustafa, S., Sajjad, M.M., Butt, H.D., & Fu, L. (2023). Advancement in artificial intelligence for on-farm fruit sorting and transportation. *Frontiers in Plant Science*, 14. <u>https://doi.org/10.3389/fpls.2023.1082860</u>