The Application of Nanobubble Technology in Hydroponic SWU-01 to Increase Dissolved Oxygen Concentration and Lettuce Plant Growth
DOI:
https://doi.org/10.23960/jtep-l.v13i4.1395-1402Abstract
Hydroponic model SWU-01 is a new hydroponic system innovation that regulates watering automatically and independently by utilizing gravity and Archimedes' law. Dissolved oxygen concentration in SWU-01 is only around 3-4.2 mg/L. DO values can be increased by applying nanobubble technology. Ultrafine bubble or nanobubble is a gas bubble in a liquid that has a diameter of <200 nm. The purpose of this study was to determine the effect of nanobubble on dissolved oxygen concentration and growth of lettuce plants cultivated with SWU-01 hydroponics. The experiment used a one-factor randomized complete block design, namely intermittent administration of nanobubble for 15 min every 3 day (P1) and 7 days (P2), and without nanobubble (P0l). The results obtained based on the ANOVA test at the 5% level with the Least Significant Difference (LSD) follow-up test, namely the parameters of fresh weight and number of leaves of lettuce P1 significantly different from P0 and P2, and no significant differences were found in root length, canopy width, and plant height. The P1 treatment is more effective in increasing dissolved oxygen concentration, leaf count, and fresh weight of lettuce produced in lettuce cultivation using the SWU-01 hydroponic system.
Keywords: Dissolved oxygen, Hydroponics, Lettuce, Nanobubbles, Plant growth.
References
Ahmadi, R., & Khodadadi Darban, A. (2013). Modeling and optimization of nano-bubble generation process using response surface methodology. International Process Journal Nanotechnology, 9(3), 151-162.
Amin, C., Perwitasari, S.D.N., & Amaru, K. (2023). Study of dissolved oxygen quality response in smart watering and autopot systems due to the effect of changes in environmental temperature. Jurnal Agrotek UMMAT, 10(2), 175-185. https://doi.org/10.31764/jau.v10i2.13347
Dwiratna, S., Amaru, K., & Nanda, M.A. (2022). The potential of hydroponic kit-based growing on a self-fertigation system for Pagoda mustard (Brassica narinosa L) production. The Scientific World Journal, 1984297, 13 pages. https://doi.org/10.1155/2022/1984297
Ebina, K., Shi, K., Hirao, M., Hashimoto, J., Kawato, Y., Kaneshiro, S., Morimoto, T., Koizumi, K., & Yoshikawa, H. (2013). Oxygen and air nanobubble water solution promote the growth of plants, fishes, and mice. PLOS ONE, 8(6), e65339 https://doi.org/10.1371/journal.pone.0065339
Iijima, M., Yamashita, K., Hirooka, Y., Ueda, Y., Yamane, K., & Kamimura, C. (2020). Ultrafine bubbles effectively enhance soybean seedling growth under nutrient deficit stress. Plant Production Science, 23(3), 366-373. https://doi.org/10.1080/1343943X.2020.1725391
Jiang, C., Zhao, S., Song, W., Yamaguchi, T., & Riskowski, G.L. (2016). Effect of micro/nano bubble water on growth, yield and
Kementerian Pertanian. (2020). Peluang ekspor sayuran hortikultura dalam sistem hidroponik. Jakarta: Direktorat Jenderal Hortikultura.
Krestiani, V., & Supriyo, H. (2022). Kajian macam media tanam dan konsentrasi nutrisi AB mix terhadap pertumbuhan dan hasil tanaman selada (Lactuca sativa L.) pada sistem hidroponik drip irrigation. Muria Jurnal Agroteknologi (MJ-Agroteknologi), 1(1), 22-29. https://doi.org/10.24176/mjagrotek.v1i1.8250
Krisna, B., Putra, E.E.T.S., Rogomulyo, R., & Kastono, D. (2017). Pengaruh pengayaan oksigen dan kalsium terhadap pertumbuhan akar dan hasil selada keriting (Lactuca sativa L.) pada hidroponik rakit apung. Vegetalika, 6(4), 14-27. https://doi.org/10.22146/veg.30900
Lingga, P. (1984). Hidroponik: Bercocok tanam tanpa tanah. Jakarta: Niaga Swadaya.
Lou, S.-T., Ouyang, Z.-Q., Zhang, Y., Li, X.-J., Hu, J., Li, M.-Q., & Yang, F.-J. (2000). Nanobubbles on solid surface imaged by atomic force microscopy. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 18, 2573–2575. https://doi.org/10.1116/1.1289925
Mulatsih, S., Sarina, S., & Miftah, M. (2021). Pertumbuhan dan hasil selada keriting (Lactuca sativa L.) pada dataran rendah dengan pemberian dosis dan aplikasi frekuensi bokashi daun lam toro. Jurnal Agroqua, 19(2). https://doi.org/10.32663/ja.v19i2.2198
Nirmalkar, N., Paceka, A.W., & Barigou, M. (2018). Interpreting the interfacial and colloidal stability of bulk nanobubbles. Soft Matter, 14, 9643-9656. https://doi.org/10.1039/C8SM01949E
Rajaseger, G., Chan, K.L., Tan, K.Y., Ramasamy, S., Khin, M.C., Amaladoss, A., & Haribhai, P.K. (2023). Hydroponics: Current trends in sustainable crop production. Bioinformation, 19(9), 925–938. https://doi.org/10.6026/97320630019925
Saputri, A., MTS, J., & Rahayu, D. (2014). Analisis sebaran oksigen terlarut pada Sungai Raya. Jurnal Teknologi Lingkungan Lahan Basah, 2(1). https://doi.org/10.26418/jtllb.v2i1.4618
Sritontip, C., Nuon, D., Tong, R., Sritontip, P., Chidburee, A., & Thonglek, N. (2022). Effects of micro-nano bubbles and electrical conductivity of nutrient solution on the growth and yield of green oak lettuce in a hydroponic production system. Journal of Sciense and Agricultural Technology, 3(1), 16–24.
Takahashi, M. (2005). ζ Potential of microbubbles in aqueous solutions: Electrical properties of the gas−water interface. The Journal of Physical Chemistry B, 109(46), 21858–21864. https://doi.org/10.1021/jp0445270
Thichuto, S., Sritontip, P., Thonglek, V., & Sritontip, C. (2022). Effects of electrical conductivity and micro/nanobubbles in nutrient solutions of hydroponics on growth and yield of cherry tomato. Journal of Science and Agricultural Technology, 3(1), 19-36. https://doi.org/10.14456/jsat.2022.9
Wang, Y., Wang, S., Sun, J., Dai, H., Zhang, B., Xiang, W., Hu, Z., Li, P., Yang, J., & Zhang, W. (2021). Nanobubbles promote nutrient utilization and plant growth in rice by upregulating nutrient uptake genes and stimulating growth hormone production. Science of the Total Environment, 800, 149627. https://doi.org/10.1016/j.scitotenv.2021.149627
Yang, X., Gil, M.I., Yang, Q., & Tomás-Barberán, F.A. (2021). Bioactive compounds in lettuce: Highlighting the benefits to human health and impacts of preharvest and postharvest practices. Comprehensive Reviews in Food Science and Food Safety, 21(1), 4-45. https://doi.org/10.1111/1541-4337.12877
Downloads
Published
Issue
Section
License
- Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International Lice that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Teknik Pertanian Lampung
JTEPL is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.