The Application of Nanobubble Technology in Hydroponic SWU-01 to Increase Dissolved Oxygen Concentration and Lettuce Plant Growth

Authors

  • Asep Yusuf Padjajaran University
  • Chay Asdak Padjajaran University
  • Mimin Muhaemin Padjajaran University
  • Eza Zahrotul Fuadah Padjajaran University
  • Sophia Dwiratna Padjajaran University
  • Muhammad Achirul Nanda Padjajaran University
  • Anto Tri Sugiarto National Research and Innovation Agency (BRIN)
  • Hilman Syaeful Alam National Research and Innovation Agency (BRIN)

DOI:

https://doi.org/10.23960/jtep-l.v13i4.1395-1402

Abstract

Hydroponic model SWU-01 is a new hydroponic system innovation that regulates watering automatically and independently by utilizing gravity and Archimedes' law. Dissolved oxygen concentration in SWU-01 is only around 3-4.2 mg/L. DO values can be increased by applying nanobubble technology. Ultrafine bubble or nanobubble is a gas bubble in a liquid that has a diameter of <200 nm. The purpose of this study was to determine the effect of nanobubble on dissolved oxygen concentration and growth of lettuce plants cultivated with SWU-01 hydroponics. The experiment used a one-factor randomized complete block design, namely intermittent administration of nanobubble for 15 min every 3 day (P1) and 7 days (P2), and without nanobubble (P0l). The results obtained based on the ANOVA test at the 5% level with the Least Significant Difference (LSD) follow-up test, namely the parameters of fresh weight and number of leaves of lettuce P1 significantly different from P0 and P2, and no significant differences were found in root length, canopy width, and plant height. The P1 treatment is more effective in increasing dissolved oxygen concentration, leaf count, and fresh weight of lettuce produced in lettuce cultivation using the SWU-01 hydroponic system.

 

Keywords: Dissolved oxygen, Hydroponics, Lettuce, Nanobubbles, Plant growth.

Author Biographies

  • Asep Yusuf, Padjajaran University
    Department of Agricultural Engineering and Biosystem, Faculty of Agro-Industrial Technology
  • Chay Asdak, Padjajaran University
    Department of Agricultural Engineering and Biosystem, Faculty of Agro-Industrial Technology
  • Mimin Muhaemin, Padjajaran University
    Department of Agricultural Engineering and Biosystem, Faculty of Agro-Industrial Technology
  • Eza Zahrotul Fuadah, Padjajaran University
    Department of Agricultural Engineering and Biosystem, Faculty of Agro-Industrial Technology
  • Sophia Dwiratna, Padjajaran University
    Department of Agricultural Engineering and Biosystem, Faculty of Agro-Industrial Technology
  • Muhammad Achirul Nanda, Padjajaran University
    Department of Agricultural Engineering and Biosystem, Faculty of Agro-Industrial Technology
  • Anto Tri Sugiarto, National Research and Innovation Agency (BRIN)
    Center for Intelligent Mechatronics Research
  • Hilman Syaeful Alam, National Research and Innovation Agency (BRIN)
    Center for Intelligent Mechatronics Research

References

Ahmadi, R., & Khodadadi Darban, A. (2013). Modeling and optimization of nano-bubble generation process using response surface methodology. International Process Journal Nanotechnology, 9(3), 151-162.

Amin, C., Perwitasari, S.D.N., & Amaru, K. (2023). Study of dissolved oxygen quality response in smart watering and autopot systems due to the effect of changes in environmental temperature. Jurnal Agrotek UMMAT, 10(2), 175-185. https://doi.org/10.31764/jau.v10i2.13347

Dwiratna, S., Amaru, K., & Nanda, M.A. (2022). The potential of hydroponic kit-based growing on a self-fertigation system for Pagoda mustard (Brassica narinosa L) production. The Scientific World Journal, 1984297, 13 pages. https://doi.org/10.1155/2022/1984297

Ebina, K., Shi, K., Hirao, M., Hashimoto, J., Kawato, Y., Kaneshiro, S., Morimoto, T., Koizumi, K., & Yoshikawa, H. (2013). Oxygen and air nanobubble water solution promote the growth of plants, fishes, and mice. PLOS ONE, 8(6), e65339 https://doi.org/10.1371/journal.pone.0065339

Iijima, M., Yamashita, K., Hirooka, Y., Ueda, Y., Yamane, K., & Kamimura, C. (2020). Ultrafine bubbles effectively enhance soybean seedling growth under nutrient deficit stress. Plant Production Science, 23(3), 366-373. https://doi.org/10.1080/1343943X.2020.1725391

Jiang, C., Zhao, S., Song, W., Yamaguchi, T., & Riskowski, G.L. (2016). Effect of micro/nano bubble water on growth, yield and

Kementerian Pertanian. (2020). Peluang ekspor sayuran hortikultura dalam sistem hidroponik. Jakarta: Direktorat Jenderal Hortikultura.

Krestiani, V., & Supriyo, H. (2022). Kajian macam media tanam dan konsentrasi nutrisi AB mix terhadap pertumbuhan dan hasil tanaman selada (Lactuca sativa L.) pada sistem hidroponik drip irrigation. Muria Jurnal Agroteknologi (MJ-Agroteknologi), 1(1), 22-29. https://doi.org/10.24176/mjagrotek.v1i1.8250

Krisna, B., Putra, E.E.T.S., Rogomulyo, R., & Kastono, D. (2017). Pengaruh pengayaan oksigen dan kalsium terhadap pertumbuhan akar dan hasil selada keriting (Lactuca sativa L.) pada hidroponik rakit apung. Vegetalika, 6(4), 14-27. https://doi.org/10.22146/veg.30900

Lingga, P. (1984). Hidroponik: Bercocok tanam tanpa tanah. Jakarta: Niaga Swadaya.

Lou, S.-T., Ouyang, Z.-Q., Zhang, Y., Li, X.-J., Hu, J., Li, M.-Q., & Yang, F.-J. (2000). Nanobubbles on solid surface imaged by atomic force microscopy. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 18, 2573–2575. https://doi.org/10.1116/1.1289925

Mulatsih, S., Sarina, S., & Miftah, M. (2021). Pertumbuhan dan hasil selada keriting (Lactuca sativa L.) pada dataran rendah dengan pemberian dosis dan aplikasi frekuensi bokashi daun lam toro. Jurnal Agroqua, 19(2). https://doi.org/10.32663/ja.v19i2.2198

Nirmalkar, N., Paceka, A.W., & Barigou, M. (2018). Interpreting the interfacial and colloidal stability of bulk nanobubbles. Soft Matter, 14, 9643-9656. https://doi.org/10.1039/C8SM01949E

Rajaseger, G., Chan, K.L., Tan, K.Y., Ramasamy, S., Khin, M.C., Amaladoss, A., & Haribhai, P.K. (2023). Hydroponics: Current trends in sustainable crop production. Bioinformation, 19(9), 925–938. https://doi.org/10.6026/97320630019925

Saputri, A., MTS, J., & Rahayu, D. (2014). Analisis sebaran oksigen terlarut pada Sungai Raya. Jurnal Teknologi Lingkungan Lahan Basah, 2(1). https://doi.org/10.26418/jtllb.v2i1.4618

Sritontip, C., Nuon, D., Tong, R., Sritontip, P., Chidburee, A., & Thonglek, N. (2022). Effects of micro-nano bubbles and electrical conductivity of nutrient solution on the growth and yield of green oak lettuce in a hydroponic production system. Journal of Sciense and Agricultural Technology, 3(1), 16–24.

Takahashi, M. (2005). ζ Potential of microbubbles in aqueous solutions: Electrical properties of the gas−water interface. The Journal of Physical Chemistry B, 109(46), 21858–21864. https://doi.org/10.1021/jp0445270

Thichuto, S., Sritontip, P., Thonglek, V., & Sritontip, C. (2022). Effects of electrical conductivity and micro/nanobubbles in nutrient solutions of hydroponics on growth and yield of cherry tomato. Journal of Science and Agricultural Technology, 3(1), 19-36. https://doi.org/10.14456/jsat.2022.9

Wang, Y., Wang, S., Sun, J., Dai, H., Zhang, B., Xiang, W., Hu, Z., Li, P., Yang, J., & Zhang, W. (2021). Nanobubbles promote nutrient utilization and plant growth in rice by upregulating nutrient uptake genes and stimulating growth hormone production. Science of the Total Environment, 800, 149627. https://doi.org/10.1016/j.scitotenv.2021.149627

Yang, X., Gil, M.I., Yang, Q., & Tomás-Barberán, F.A. (2021). Bioactive compounds in lettuce: Highlighting the benefits to human health and impacts of preharvest and postharvest practices. Comprehensive Reviews in Food Science and Food Safety, 21(1), 4-45. https://doi.org/10.1111/1541-4337.12877

Downloads

Published

2024-12-12