The Physiological Response of Germination and Growth in Solanaceae Plants (Capsicum frutescens, Solanum melongena, Solanum lycopersicum) at Different Salinity Levels

Authors

  • Nelly Vikiladyla Della Diponegoro University
  • Endah Dwi Hastuti Diponegoro University
  • Nintya Setiari Diponegoro University

DOI:

https://doi.org/10.23960/jtep-l.v13i4.1352-1360

Abstract

High salinity causes osmotic stress and ion imbalance that can reduce plant productivity. Solanaceae can be developed for cultivation in saline land, but its growth is influenced by the type of species. This study aims to examine the tolerance level of three Solanaceae plants to salinity stress through observation of physiological responses of germination and growth. This study used a 3 x 4 factorial Completely Randomized Design (CRD). The first factor is salinity: 0 ppm, 2,500 ppm, 5,000 ppm and 7,500 ppm. The second factor is the Solanaceae species, namely Capsicum frutescens, Solanum melongena, and Solanum lycopersicum. Germination parameters include germination power, wet weight and dry weight. The growth parameters observed include plant height, root length, stem diameter, leaf area, number of leaves, wet weight of leaves, roots and stems and dry weight of leaves, roots and stems. The results of the study showed that C. frutescens is a plant that is more tolerant to salinity up to a concentration of 5,000 ppm when compared to S. melongena and S. lycopersicum whose tolerance is up to 2,500 ppm.

 

Keywords: Germination, Salinity, Solanaceae, Vegetative Growth.

Author Biographies

  • Nelly Vikiladyla Della, Diponegoro University
    Department of Biology, Faculty of Science and Mathematics
  • Endah Dwi Hastuti, Diponegoro University
    Department of Biology, Faculty of Science and Mathematics
  • Nintya Setiari, Diponegoro University
    Department of Biology, Faculty of Science and Mathematics

References

Abdel-Farid, I.B., Marghany, M. R., Rowezek, M.M., & Sheded, M.G. (2020). Effect of salinity stress on growth and metabolomic profiling of Cucumis sativus and Solanum lycopersicum. Plants (Basel), 9(11), 1626. https://doi.org/10.3390/plants9111626

Acosta-Motos, J.R., Ortuño, M.F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M.J., & Hernandez, J.A. (2017). Plant responses to salt stress: Adaptive mechanisms. Agronomy, 7(1), 18. https://doi.org/10.3390/agronomy7010018

Arifiani, F.N. (2019). Pengaruh bahan organik terhadap pertumbuhan dan hasil padi (Oryza sativa L.) tercekam salinitas. Vegetalika, 7(3), 34897. https://doi.org/10.22146/veg.34897

Amartani, K. (2019). Respon perkecambahan benih jagung (Zea mays L.) pada kondisi cekaman garam. Agrosainstek, 3(1), 9-14. https://doi.org/10.33019/agrosainstek.v3i1.32

Ashraf, M., & Harris, P.J.C. (2013). Photosynthesis under stressful environments: An overview. Photosynthetica, 51(2), 163–190. https://doi.org/10.1007/s11099-013-0021-6

Bielach, A., Hrtyan, M., & Tognetti, V.B. (2017). Plants under stress: Involvement of auxin and cytokinin. International Journal of Molecular Sciences, 18(7). https://doi.org/10.3390/ijms18071427

Biswas, M.S., Islam, M.R., & Zakaria, M. (2017). Evaluation of indigenous potato challisha (Solanum tuberosum L. Cv. Challisha) somaclonals tolerance to salinity In Vitro. Journal of Tropical Life Science, 7(1), 77–82. https://doi.org/10.11594/jtls.07.01.13

Choirunnisa, J.P., Widiyastuti, Y., Sakya, A.T., & Yunus, A. (2021). Karakter morfologi akar dan fisiologi Echinacea purpurea pada berbagai cekaman salinitas. Agropross: National Conference Proceedings of Agriculture, 5, 65–74. https://doi.org/10.25047/agropross.2021.207

Clermont-Dauphin, C., Suwannang, N., Grünberger, O., Hammecker, C., & Maeght, J.L. (2010). Yield of rice under water and soil salinity risks in farmers’ fields in Northeast Thailand. Field Crops Research, 118(3), 289–296. https://doi.org/10.1016/j.fcr.2010.06.009

Dewi, V.P., Hindun, I., & Wahyuni, S. (2015). Studi trikoma daun pada famili solanaceae sebagai sumber belajar biologi. Jurnal Pendidikan Biologi Indonesia, 1(2), 209–2018.

Hasanuzzaman, M., Nahar, K., Alam, M.M., Bhowmik, P.C., Hossain, M.A., Rahman, M.M., Prasad, M.N.V., Ozturk, M., & Fujita, M. (2014). Potential use of halophytes to remediate saline soils. BioMed Research International, 2014, 589341. https://doi.org/10.1155/2014/589341

Karolinoerita, V., & Annisa, W. (2020). Salinisasi lahan dan permasalahannya di Indonesia. Jurnal Sumberdaya Lahan, 14(2), 91.

Kurniahu, H. (2023). Efek perendaman biji dalam PGPR terhadap pertumbuhan semai cabai rawit (Capsicum frutescens L.). Jurnal Ilmiah Biosaintropis (Bioscience-Tropic), 8(2), 87–96. https://doi.org/10.33474/e-jbst.v8i2.516

Lee, S.C., & Luan, S. (2012). ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant, Cell & Environment, 35, 53-60. https://doi.org/10.1111/j.1365-3040.2011.02426.x

Liu, L., Xia, W., Li, H., Zeng, H., Wei, B., Han, S., & Yin, C. (2018). Salinity inhibits rice seed germination by reducing α-amylase activity via decreased bioactive gibberellin content. Frontiers in Plant Science, 9(March), 1–9. https://doi.org/10.3389/fpls.2018.00275

Masganti, M., Abduh, A.M., Rina D., Y., Alwi, M., Noor, M., & Agustina, R. (2023). Pengelolaan lahan dan tanaman padi di Lahan Salin. Jurnal Sumberdaya Lahan, 16(2), 83. https://doi.org/10.21082/jsdl.v16n2.2022.83-95

Movafegh, S., Jadid, R. R., & Kiabi, S. (2012). Effect of salinity stress on chlorophyll content, proline, water soluble carbohydrate, germination, growth and dry weight of three seedling barley (Hordeum vulgare L.) cultivars. Journal of Stress Physiology & Biochemistry, 8(4), 157–168.

Pratiwi, A., Krisjayanti, E.W., & Utami, I. (2021). Respon pertumbuhan tomat cherry (Solanum lycopersicum var. cerasiforme) terhadap konsentrasi salinitas NaCl. Bioscientist : Jurnal Ilmiah Biologi, 9(2), 494. https://doi.org/10.33394/bjib.v9i1.3429

Purwaningrahayu, R.D., & Taufiq, A. (2017). Respon morfologi empat genotip kedelai terhadap cekaman salinitas. Jurnal Biologi Indonesia, 13(2), 175–188. https://doi.org/10.47349/jbi/13022017/175

Puvanitha, S., & Mahendran, S. (2017). Effect of salinity on plant height, shoot and root dry weight of selected rice cultivars. Scholars Journal of Agriculture and Veterinary Sciences, 4(4), 126–131. http://dx.doi.org/10.13140/RG.2.2.10540.72322

Shu, K., Qi, Y., Chen, F., Meng, Y., Luo, X., Shuai, H., Zhou, W., Ding, J., Du, J., Liu, J., Yang, F., Wang, Q., Liu, W., Yong, T., Wang, X., Feng, Y., & Yang, W. (2017). Salt stress represses soybean seed germination by negatively regulating GA biosynthesis while positively mediating ABA biosynthesis. Frontiers in Plant Science, 8(August), 1–12. https://doi.org/10.3389/fpls.2017.01372

Siswanti, D.U., & Khairunnisa, N.A. (2021). The effect of biofertilizer and salinity stress on Amaranthus tricolor L. growth and total leaf chlorophyll content. BIO Web of Conferences, 33, 02004. https://doi.org/10.1051/bioconf/20213302004

Sobir, Miftahudin, & Helmi, S. (2018). Respon morfologi dan fisiologi genotipe terung (Solanum melongena L.) terhadap cekaman salinitas. Jurnal Hortikultura Indonesia, 9(2), 131–138. https://doi.org/10.29244/jhi.9.2.131-138

Soltani, A., Walter, K.A., Wiersma, A.T., Santiago, J.P., Quiqley, M., Chitwood, D., Porch, T.G., Miklas, P., McClean, P.E., Osorno, J.M., & Lowry, D.B. (2021). The genetics and physiology of seed dormancy, a crucial trait in common bean domestication. BMC Plant Biology, 21(1), 1–17. https://doi.org/10.1186/s12870-021-02837-6

Sukarman, Mulyani, A., & Purwanto, S. (2018). The modification of land evaluation methods for oriented climate change. Indonesian Land Resource Journal, 12(1), 1–11. https://media.neliti.com/media/publications/277189-none-c40fe6a2.pdf

Susilawati, A., Nursyamsi, D., & Syakir, M. (2016). Optimalisasi penggunaan lahan rawa pasang surut mendukung swasembada pangan nasional. Jurnal Sumberdaya Lahan, 10(1), 51–64.

Trivellini, A., Carmassi, G., Scatena, G., Vernieri, P., & Ferrante, A. (2023). Molecular and physiological responses to salt stress in salinity-sensitive and tolerant Hibiscus rosa-sinensis cultivars. Molecular Horticulture, 3, 1–18. https://doi.org/10.1186/s43897-023-00075-y

Zhang, J.L., & Shi, H. (2013). Physiological and molecular mechanisms of plant salt tolerance. Photosynthesis Research, 115(1), 1–22. https://doi.org/10.1007/s11120-013-9813-6

Downloads

Published

2024-12-03