Effect of Codigestion of Rice Straw, Fish Meal, and Cow Manure on Biogas Production and Quality of Solid Bioslurry Fertilizer

Authors

  • Sri Ismiyati Damayanti Universitas Lampung
  • Rifki Amirul Hakim Universitas Lampung
  • Anggi Anggraeni Universitas Lampung
  • Yuni Saputri Universitas Lampung

DOI:

https://doi.org/10.23960/jtep-l.v13i4.1272-1284

Abstract

The solid phase bioslurry (sludge) had the potential to be used as organic fertilizer. However, the NPK content in it did not meet SNI standards. This research aimed to study the effect of adding rice straw and fish meal to cow dung substrate for anaerobic processing, on the NPK content of the sludge produced and biogas production. Two digesters were used, which functioned as a control and a codigestion digester. Initially, in both digesters, starter breeding was carried out in batches. After the starter had grew well, then the substrate along with water was fed continuously at 88 mL/day in each digester, and an output of 88 mL/day was also produced. Analysis of COD, sCOD, VFA concentrations, and measurements of the pH values of feed and output were carried out every 3 days. Biogas volume measurements were carried out every day. The process was stopped when conditions were steady. At the end of the process, an analysis of the NPK content in the sludge and the methane content in the biogas were carried out. The results showed that biogas from codigestion content almost no methane. However, the sludge contained NPK within the range of SNI standard.

 

Keywords: Biogas, Cow dung, Fish meal, Rice straw, Solid bioslurry fertilizer.

Author Biographies

  • Sri Ismiyati Damayanti, Universitas Lampung
    Jurusan Teknik Kimia, Fakultas Teknik
  • Rifki Amirul Hakim, Universitas Lampung
    Jurusan Teknik Kimia, Fakultas Teknik
  • Anggi Anggraeni, Universitas Lampung
    Jurusan Teknik Kimia, Fakultas Teknik
  • Yuni Saputri, Universitas Lampung
    Jurusan Teknik Kimia, Fakultas Teknik

References

Abebe, M.A. (2017). Characterization of sludge from a biogas reactor for the application bio-fertilizer. International Journal of Scientific Engineering and Science, 1(3), 12–16.

Alhanif, M., Astuti, W., Wardani, P., Sufra, R., & Auriyani, W.A. (2023). Limbah jerami padi sebagai sumber N, P, dan K organik dalam pembuatan pupuk untuk produksi tanaman bayam (Amaranthus Sp.). Hexatech: Jurnal Ilmiah Teknik, 2(1), 23–28. https://doi.org/10.55904/hexatech.v2i1.709

BPS (Badan Pusat Statistik). (2022). Peternakan Dalam Angka Tahun 2022. Badan Pusat Statistik Indonesia, Jakarta.

Bonten, L.T.C., Zwart, K.B., Rietra, R.P.J.J., Postma, R., de Haas, M.J.G., & Nysingh, S.L. (2014). Bio-slurry as fertilizer : Is bio-slurry from household digesters a better fertilizer than manure? : A literature review. (Alterra-report; No. 2519). Alterra. https://edepot.wur.nl/307735

Budiyono, B., Khaerunnisa, G., & Rahmawati, I. (2013 Pengaruh pH dan rasio COD:N terhadap produksi biogas dengan bahan baku limbah industri alkohol (Vinasse)). Jurnal Penelitian Kimia, 11(1). https://doi.org/10.31315/e.v11i1.324

Damayanti, S.I., Astiti, D.F., Purnomo, C.W., Sarto, S., & Budhijanto, W. (2019). Inoculum selection and micro-aeration for biogas production in two-stage anaerobic digestion of palm oil mill effluent (POME). Jurnal Bahan Alam Terbarukan, 8(1), 14–21. https://doi.org/10.15294/jbat.v8i1.16318

Damayanti, S.I., Ginting, S., Nawansih, O., & Hudaidah, S. (2020). Implementation of biogas-based energy security program and evaluation of its sustainability in Kediri Village, Pringsewu District, Lampung Province. ASEAN Journal of Community Engagement, 4(1). https://doi.org/10.7454/ajce.v4i1.1074

Damayanti, S.I., Nawansih, O., Iryani, D.A., & Ginting, S.B. (2022). Diseminasi alat pemisah pupuk bioslurry dan diseminasi pengomposan pupuk bioslurry padat-kulit kopi sebagai upaya pengoptimalan pengelolaan kotoran sapi menjadi biogas. Nemui Nyimah, 2(2), 11p.

Damayanti, S.I., Sarto, Astiti, D.F., & Budhijanto, W. (2019). The effectiveness of pH adjustment and controlled oxygen injection to enhance acidogenic performance in two-stage anaerobic digestion. AIP Conference Proceedings, 2085. https://doi.org/10.1063/1.5094994

Deng, Z., Ferreira, A.L.M., Spanjers, H., & van Lier, J.B. (2023). Anaerobic protein degradation: Effects of protein structural complexity, protein concentrations, carbohydrates, and volatile fatty acids. Bioresource Technology Reports, 22. https://doi.org/10.1016/j.biteb.2023.101501

Eryildiz, B., Lukitawesa, & Taherzadeh, M.J. (2020). Effect of pH, substrate loading, oxygen, and methanogens inhibitors on volatile fatty acid (VFA) production from citrus waste by anaerobic digestion. Bioresource Technology, 302. https://doi.org/10.1016/j.biortech.2020.122800

Hakim, R.A. (2022). Pengaruh Penambahan Jerami Padi dan Tepung Ikan terhadap Produksi Biogas dan Kandungan NPK pada Bioslurry. In Jurusan Teknik Kimia, Fakultas Teknik, Universitas Lampung.

Hamzah, A.F.A., Hamzah, M.H., Che Man, H., Jamali, N.S., Siajam, S.I., & Ismail, M.H. (2023). Effect of organic loading on anaerobic digestion of cow dung: Methane production and kinetic study. Heliyon, 9(6). https://doi.org/10.1016/j.heliyon.2023.e16791

Haruta, S., Cui, Z., Huang, Z., Li, M., Ishii, M., & Iragashi, Y. (2002). Construction of a stable microbial community with high cellulose-degradation ability. Appl Microbiol Biotechnol, 59, 529–534. https://doi.org/https://doi.org/10.1007/s00253-002-1026-4

Iriani, P., Suprianti, Y., & Yulistiani, F. (2017). Fermentasi anaerobik biogas dua tahap dengan aklimatisasi dan pengkondisian pH fermentasi. Jurnal Teknik Kimia dan Lingkungan, 1(1), 1–10. https://doi.org/10.33795/jtkl.v1i1.16

Jiang, Y., McAdam, E., Zhang, Y., Heaven, S., Banks, C., & Longhurst, P. (2019). Ammonia inhibition and toxicity in anaerobic digestion: A critical review. Journal of Water Process Engineering, 32. https://doi.org/doi.org/10.1016/j.jwpe.2019.100899

Kabeyi, M.J.B., & Olanrewaju, O.A. (2022). Biogas production and applications in the sustainable energy transition. Journal of Energy, 2022, 1–42. https://doi.org/10.1155/2022/8750221

Kapoor, R., Ghosh, P., Tyagi, B., Vijay, V.K., Vijay, V., Thakur, I.S., Kamyab, H., Nguyen, D.D., & Kumar, A. (2020). Advances in biogas valorization and utilization systems: A comprehensive review. Journal of Cleaner Production, 273, 123052 https://doi.org/10.1016/j.jclepro.2020.123052

Kementerian Kelautan dan Perikanan. (2022). Kelautan dan Perikanan dalam Angka Tahun 2022 (Editors: M.E. Rennisca Ray Damanti, M. Rikrik Rahadian, S.S. Dhina Arriyana, & S.P. Susiyanti). Kementerian Kelautan dan Perikanan, Jakarta.

Kementerian Pertanian. (2023). Jerami sebagai Sumber Bahan Organik untuk Kesuburan Tanah. Kementerian Pertanian. https://tanamanpangan.pertanian.go.id/detil-konten/iptek/151

Kumar, S., Shilpi, & Singh, S. (2023). Biogas as a powerhouse of renewable energy : A review. J. Adv. Res. in Alternative Energy, Environment and Ecology, 10(1), 1–5.

Mandal, K.G., Misra, A.K., Hati, K.M., Bandyopadhyay, K.K., Ghosh, P.K., & Mohanty, M. (2004). Rice residue-management options and effects on soil properties and crop productivity. Food, Agriculture & Environment, 2(1), 224–231.

Ngan, N.V.C., Chan, F.M.S., Nam, T.S., Thao, H.V., Maguyon-Detras, M.C., Hung, D.V., Cuong, D.M., & Hung, N.V. (2019). Anaerobic digestion of rice straw for biogas production. In M. Gummert, N. Hung, P. Chivenge, & B. Douthwaite (Eds.), Sustainable rice straw management (pp. 66-93). Springer, Cham. https://doi.org/10.1007/978-3-030-32373-8_5

Pambudi, S., Kirom, M.R., & Suhendi, A. (2018). Pengaruh kadar keasaman (pH) terhadap produksi biogas dengan menggunakan campuran kotoran hewan dan substrat kentang busuk pada reaktor anaerob. E-Proceeding of Engineering, 5(3), 5770–5776.

Rianawati, E., Sagala, S., Hafiz, I., Anhorn, J., Alemu, S., Hilbert, J., Rosslee, D., Mohammed, M., Salie, Y., Rutz, D., Rohrer, M., Sainz, A., Kirchmeyr, F., Zacepins, A., & Hofmann, F. (2021). The potential of biogas in energy transition in Indonesia. IOP Conference Series: Materials Science and Engineering, 1143(1), 012031. https://doi.org/10.1088/1757-899x/1143/1/012031

Sarker, S.A., Wang, S., Adnan, K.M.M., & Sattar, M.N. (2020). Economic feasibility and determinants of biogas technology adoption: Evidence from Bangladesh. Renewable and Sustainable Energy Reviews, 123. https://doi.org/10.1016/j.rser.2020.109766

Skorek-Osikowska, A., Martín-Gamboa, M., Iribarren, D., García-Gusano, D., & Dufour, J. (2020). Thermodynamic, economic and environmental assessment of energy systems including the use of gas from manure fermentation in the context of the Spanish potential. Energy, 200. https://doi.org/10.1016/j.energy.2020.117452

Sogn, T.A., Dragicevic, I., Linjordet, R., Krogstad, T., Eijsink, V.G.H., & Eich-Greatorex, S. (2018). Recycling of biogas digestates in plant production: NPK fertilizer value and risk of leaching. International Journal of Recycling of Organic Waste in Agriculture, 7(1), 49–58. https://doi.org/10.1007/s40093-017-0188-0

Syukron, F. (2018). Pembuatan pupuk organik bokashi dari tepung ikan limbah perikanan Waduk Cirata. Jurnal Sungkai, 6(1), 1-16.

Tim Biru. (2014). Pedoman pengguna dan pengawas pengelolaan dan pemanfaatan bioslurry. In Buku Pedoman Penggunaan dan Pemanfaatan Bioslurry (3rd ed.).

Walker, M., Zhang, Y., Heaven, S., & Banks, C. (2009). Potential errors in the quantitative evaluation of biogas production in anaerobic digestion processes. Bioresource Technology, 100(24), 6339–6346. https://doi.org/10.1016/j.biortech.2009.07.018

Yafizham, Y., & Sutarno, S. (2018). Fermentation of anaerobic cow waste as bio-slurry organic fertilizer and nitrogen chemical fertilizer on soybean. IOP Conference Series: Earth and Environmental Science, 119, 12050. https://doi.org/10.1088/1755-1315/119/1/012050

Yustika, D., Situmoranng, H., Tambunan, M.O., Frastika, W., & Sihite, Y. (2023). Penentuan nilai cod sebagai parameter pencemaran air dan baku mutu air limbah fasilitas pelayanan kesehatan Rumah Sakit Putri Bidadari Langkat. Jurnal Pendidikan, Sains dan Teknologi, 2(2), 346–348.

Downloads

Published

2024-12-03