Biochar and Humic Substances Roles for Nitrogen Transformation in Agriculture

Authors

  • Gagad Restu Pratiwi National Research and Innovation Agency
  • Arinal Haq Izzawati Nurrahma National Research and Innovation Agency

DOI:

https://doi.org/10.23960/jtep-l.v13i4.1442-1452

Abstract

Sustainable soil fertility management is crucial for global food security and addressing environmental challenges from modern agriculture. Soil health, alongside water availability, is essential for crop productivity, and soil degradation threatens food security by lowering yields and intensifying climate change. Nitrogen (N) cycling is central to soil fertility, supporting plant growth through nutrient replenishment and microbial activity. However, N is often lost through leaching, volatilization, and denitrification, reducing nitrogen use efficiency (NUE) and contributing to water pollution and greenhouse gas (GHG) emissions. Optimizing nitrogen retention in soils is vital for improving productivity and minimizing environmental harm. Biochar (BC) and humic substances (HSs) have emerged as effective strategies for improving N management. BC enhances soil fertility by increasing soil pH, cation exchange capacity, and water retention, while reducing nutrient leaching and promoting carbon sequestration. HSs, including humic acids (HA), fulvic acids (FA) and humin (HU), improve nutrient cycling by stimulating microbial activity and enhancing nutrient transport. Together, BC and HSs provide synergistic benefits for soil health, particularly in challenging environments like saline or nutrient-depleted soils. This review highlights the roles of BC and HSs in enhancing soil fertility, promoting N mineralization, and improving crop productivity. It emphasizes their potential for sustainable agricultural practices, climate change mitigation, and long-term soil health.

 

Keywords: Biochar, Climate changes, Humic substances, Remediation, Soil fertility.

Author Biographies

  • Gagad Restu Pratiwi, National Research and Innovation Agency
    Research Center for Food Crops
  • Arinal Haq Izzawati Nurrahma, National Research and Innovation Agency
    Research Center for Food Crops

References

Adhikary, R., Pal, A., Barman, S., & Maitra, S. (2020). Nitrogen transformation and losses in soil: A cost-effective review study for farmers. International Journal of Chemical Studies, 8(3), 2623–2626. https://doi.org/10.22271/chemi.2020.v8.i3al.9609

Agarwal, P.K., Gupta, K., Lopato, S., & Agarwal, P. (2017). Dehydration responsive element binding transcription factors and their applications for the engineering of stress tolerance. Journal of Experimental Botany, 68(9), 2135–2148. https://doi.org/10.1093/jxb/erx118

Bagnall, D.K., Shanahan, J.F., Flanders, A., Morgan, C.L.S., & Honeycutt, C.W. (2021). Soil health considerations for global food security. Agronomy Journal, 113(6), 4581–4589. https://doi.org/10.1002/agj2.20783

Cao, Z., Deng, F., Wang, R., Li, J., Liu, X., & Li, D. (2023). Bioaugmentation on humification during co-composting of corn straw and biogas slurry. Bioresource Technology, 374, 128756. https://doi.org/10.1016/j.biortech.2023.128756

Chen, M., Liu, D., Shao, X., Li, S., Jin, X., Qi, J., Liu, H., & Li, C. (2024a). Effect of biochar types and rates on SOC and its active fractions in tropical farmlands of China. Agronomy, 14(4), 676. https://doi.org/10.3390/agronomy14040676

Chen, T., Cheng, R., Xiao, W., Shen, Y., Wang, L., Sun, P., Zhang, M., & Li, J. (2024b). Nitrogen addition enhances soil nitrogen mineralization through an increase in mineralizable organic nitrogen and the abundance of functional genes. Journal of Soil Science and Plant Nutrition, 24(1), 975–987. https://doi.org/10.1007/s42729-023-01600-0

Dai, Z., Xiong, X., Zhu, H., Xu, H., Leng, P., Li, J., Tang, C., & Xu, J. (2021). Association of biochar properties with changes in soil bacterial, fungal and fauna communities and nutrient cycling processes. Biochar, 3(3), 239–254. https://doi.org/10.1007/s42773-021-00099-x

Diallo, M.S., Simpson, A., Gassman, P., Faulon, J.L., Johnson, J.H., Goddard, W.A., & Hatcher, P.G. (2003). 3-D structural modeling of humic acids through experimental characterization, computer assisted structure elucidation and atomistic simulations. 1. Chelsea soil humic acid. Environmental Science & Technology, 37(9), 1783–1793.

Ding, Y., Gao, X., Shu, D., Siddique, K.H.M., Song, X., Wu, P., Li, C., & Zhao, X. (2024). Enhancing soil health and nutrient cycling through soil amendments: Improving the synergy of bacteria and fungi. Science of The Total Environment, 923, 171332. https://doi.org/10.1016/j.scitotenv.2024.171332

Egyir, M., Luyima, D., Kim, S.H., & Oh, T.K. (2022). Effects of modified and nitrogen-enriched biochars on ammonia emissions and crop yields under a field environment. Water, Air, & Soil Pollution, 233(11), 439. https://doi.org/10.1007/s11270-022-05871-8

Elrys, A.S., Ali, A., Zhang, H., Cheng, Y., Zhang, J., Cai, Z.-C., Müller, C., & Chang, S.X. (2021). Patterns and drivers of global gross nitrogen mineralization in soils. Global Change Biology, 27(22), 5950–5962. https://doi.org/10.1111/gcb.15851

Francini, A., Giro, A., & Ferrante, A. (2019). Biochemical and molecular regulation of phenylpropanoids pathway under abiotic stresses. Plant signaling molecules, (pp. 183–192). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-816451-8.00011-3

Gabasawa, A.I., Abubakar, G.A., & Obemah, D.N. (2024). Soil regeneration and microbial community on terrestrial food chain. In S.A. Aransiola, B.R. Babaniyi, A.B. Aransiola, & N.R. Maddela (Eds.), Prospects for soil regeneration and its impact on environmental protection (pp. 243–267). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-53270-2_11

Gadd, G.M. (2013). Microbial roles in mineral transformations and metal cycling in the Earth’s critical zone. In J. Xu & D.L. Sparks (Eds.), Molecular environmental soil science (pp. 115–165). Springer Netherlands. https://doi.org/10.1007/978-94-007-4177-5_6

Gan, L.-h., Yan, Z.-r., Ma, Y.-f., Zhu, Y.-y., Li, X.-y., Xu, J., & Zhang, W. (2019). pH dependence of the binding interactions between humic acids and bisphenol A—A thermodynamic perspective. Environmental Pollution, 255, 113292. https://doi.org/10.1016/j.envpol.2019.113292

Ghadirnezhad Shiade, S.R., Fathi, A., Minkina, T., Wong, M.H., & Rajput, V.D. (2024). Biochar application in agroecosystems: A review of potential benefits and limitations. Environment, Development and Sustainability, 26(8), 19231–19255. https://doi.org/10.1007/s10668-023-03470-z

Gomiero, T. (2016). Soil degradation, land scarcity and food security: Reviewing a complex challenge. Sustainability, 8(3), 281. https://doi.org/10.3390/su8030281

Haider, M.I.S., Liu, G., Yousaf, B., Arif, M., Aziz, K., Ashraf, A., Safeer, R., Ijaz, S., & Pikon, K. (2024). Synergistic interactions and reaction mechanisms of biochar surface functionalities in antibiotics removal from industrial wastewater. Environmental Pollution, 356, 124365. https://doi.org/10.1016/j.envpol.2024.124365

Hailegnaw, N.S., Mercl, F., PraÄke, K., Száková, J., & TlustoÅ¡, P. (2019). Mutual relationships of biochar and soil pH, CEC, and exchangeable base cations in a model laboratory experiment. Journal of Soils and Sediments, 19(5), 2405–2416. https://doi.org/10.1007/s11368-019-02264-z

Hasanuzzaman, M., Nowroz, F., Raihan, M.R.H., Siddika, A., Alam, M.M., & Prasad, P.V.V. (2024). Application of biochar and humic acid improves the physiological and biochemical processes of rice (Oryza sativa L.) in conferring plant tolerance to arsenic-induced oxidative stress. Environmental Science and Pollution Research, 31(1), 1562–1575. https://doi.org/10.1007/s11356-023-31119-x

He, D., Luo, Y., & Zhu, B. (2024). Feedstock and pyrolysis temperature influence biochar properties and its interactions with soil substances: Insights from a DFT calculation. Science of The Total Environment, 922, 171259. https://doi.org/10.1016/j.scitotenv.2024.171259

He, H.-T., Xing, L.-C., Zhang, J.-S., & Tang, M. (2016). Binding characteristics of Cd²âº, Zn²âº, Cu²âº, and Li⺠with humic substances: Implication to trace element enrichment in low-rank coals. Energy Exploration & Exploitation, 34(5), 735–745. https://doi.org/10.1177/0144598716656067

Heidari Dehno, A., & Mohtadi, A. (2018). The effect of different iron concentrations on lead accumulation in hydroponically grown Matthiola flavida Boiss. Ecological Research, 33(4), 757–765. https://doi.org/10.1007/s11284-018-1558-4

Holatko, J., Hammerschmiedt, T., Latal, O., Kintl, A., Mustafa, A., Baltazar, T., Malicek, O., & Brtnicky, M. (2022a). Deciphering the effectiveness of humic substances and biochar modified digestates on soil quality and plant biomass accumulation. Agronomy, 12(7), 1587. https://doi.org/10.3390/agronomy12071587

Holatko, J., Hammerschmiedt, T., Mustafa, A., Kintl, A., Radziemska, M., Baltazar, T., Jaskulska, I., Malicek, O., & Brtnicky, M. (2022b). Carbon-enriched organic amendments differently affect the soil chemical, biological properties and plant biomass in a cultivation time-dependent manner. Chemical and Biological Technologies in Agriculture, 9(1), 52. https://doi.org/10.1186/s40538-022-00319-x

Hossain, M.Z., Bahar, M.M., Sarkar, B., Donne, S.W., Ok, Y.S., Palansooriya, K.N., Kirkham, M.B., Chowdhury, S., & Bolan, N. (2020). Biochar and its importance on nutrient dynamics in soil and plant. Biochar, 2(4), 379–420. https://doi.org/10.1007/s42773-020-00065-z

Hu, H., Xi, B., & Tan, W. (2021). Effects of sulfur-rich biochar amendment on microbial methylation of mercury in rhizosphere paddy soil and methylmercury accumulation in rice. Environmental Pollution, 286, 117290. https://doi.org/10.1016/j.envpol.2021.117290

Hung, C.-Y., Hussain, N., Husk, B.R., & Whalen, J.K. (2021). Ammonia volatilization from manure mixed with biochar. Canadian Journal of Soil Science, 102(1), 177–186. https://doi.org/10.1139/cjss-2021-0029

Ippolito, J.A., Cui, L., Kammann, C., Wrage-Mönnig, N., Estavillo, J.M., Fuertes-Mendizabal, T., Cayuela, M.L., Sigua, G., Novak, J., Spokas, K., & Borchard, N. (2020). Feedstock choice, pyrolysis temperature and type influence biochar characteristics: A comprehensive meta-data analysis review. Biochar, 2(4), 421–438. https://doi.org/10.1007/s42773-020-00067-x

Janu, R., Mrlik, V., Ribitsch, D., Hofman, J., SedláÄek, P., Bielská, L., & Soja, G. (2021). Biochar surface functional groups as affected by biomass feedstock, biochar composition and pyrolysis temperature. Carbon Resources Conversion, 4, 36–46. https://doi.org/10.1016/j.crcon.2021.01.003

Jarosz, R., Mierzwa-Hersztek, M., Gondek, K., Kopeć, M., Lošák, T., & MarciÅ„ska-Mazur, L. (2022). Changes in quantity and quality of organic matter in soil after application of poultry litter and poultry litter biochar—5-year field experiment. Biomass Conversion and Biorefinery, 12(7), 2925–2934. https://doi.org/10.1007/s13399-020-01005-4

Jin, X., Zhang, T., Hou, Y., Bol, R., Zhang, X., Zhang, M., Yu, N., Meng, J., Zou, H., & Wang, J. (2024). Review on the effects of biochar amendment on soil microorganisms and enzyme activity. Journal of Soils and Sediments, 24(7), 2599–2612. https://doi.org/10.1007/s11368-024-03841-7

Kandeler, K. (1996). Nitrogen mineralization. In F. Schinner, R. Öhlinger, E. Kandeler, & R. Margesin (Eds.), Methods in soil biology (pp. 135–143). Springer. https://doi.org/10.1007/978-3-642-60966-4_9

Kansara, K., Sathish, C., Vinu, A., Kumar, A., & Karakoti, A.S. (2021). Assessment of the impact of abiotic factors on the stability of engineered nanomaterials in fish embryo media. Emergent Materials, 4(5), 1339–1350. https://doi.org/10.1007/s42247-021-00224-3

Kononova, Ma.M. (2013). Soil organic matter: Its nature, its role in soil formation and in soil fertility. Elsevier.

Lee, M.-H., Ok, Y.S., & Hur, J. (2018). Dynamic variations in dissolved organic matter and the precursors of disinfection by-products leached from biochars: Leaching experiments simulating intermittent rain events. Environmental Pollution, 242, 1912–1920. https://doi.org/10.1016/j.envpol.2018.07.073

Leng, L., Xiong, Q., Yang, L., Li, H., Zhou, Y., Zhang, W., Jiang, S., Li, H., & Huang, H. (2021). An overview on engineering the surface area and porosity of biochar. Science of The Total Environment, 763, 144204. https://doi.org/10.1016/j.scitotenv.2020.144204

Li, F., Men, S., Zhang, S., Huang, J., Puyang, X., Wu, Z., & Huang, Z. (2020). Responses of low-quality soil microbial community structure and activities to application of a mixed material of humic acid, biochar, and super absorbent polymer. Journal of Microbiology and Biotechnology, 30(9), 1310–1320. https://doi.org/10.4014/jmb.2003.03047

Ma, Y., Xie, W., Yao, R., Feng, Y., Wang, X., Xie, H., Feng, Y., & Yang, J. (2024). Biochar and hydrochar application influence soil ammonia volatilization and the dissolved organic matter in salt-affected soils. Science of The Total Environment, 926, 171845. https://doi.org/10.1016/j.scitotenv.2024.171845

Mahala, D.M., Maheshwari, H.S., Yadav, R.K., Prabina, B.J., Bharti, A., Reddy, K.K., Kumawat, C., & Ramesh, A. (2020). Microbial transformation of nutrients in soil: An overview. In S.K. Sharma, U.B. Singh, P.K. Sahu, H.V. Singh, & P.K. Sharma (Eds.), Rhizosphere microbes: Soil and plant functions (pp. 175–211). Springer. https://doi.org/10.1007/978-981-15-9154-9_7

Manu, M.K., Wang, C., Li, D., Varjani, S., Xu, Y., Ladumor, N., Lui, M., Zhou, J., & Wong, J.W.C. (2021). Biodegradation kinetics of ammonium enriched food waste digestate compost with biochar amendment. Bioresource Technology, 341, 125871. https://doi.org/10.1016/j.biortech.2021.125871

Masud, M.A.A., Shin, W.S., Sarker, A., Septian, A., Das, K., Deepo, D.M., Iqbal, M.A., Islam, A.R.M.T., & Malafaia, G. (2023). A critical review of sustainable application of biochar for green remediation: Research uncertainty and future directions. Science of The Total Environment, 904, 166813. https://doi.org/10.1016/j.scitotenv.2023.166813

Mi, W., Ma, Q., Cao, X., & Wu, L. (2023). Soil fertility management for sustainable crop production. Agronomy, 13(4), 1026. https://doi.org/10.3390/agronomy13041026

Nadarajah, K.K. (2022). Soil fertility and sustainable agriculture. In S.K. Nayak, B. Baliyarsingh, I. Mannazzu, A. Singh, & B.B. Mishra (Eds.), Advances in Agricultural and Industrial Microbiology: Volume 1: Microbial diversity and application in agroindustry (pp. 1-16). Springer Nature Singapore. https://doi.org/10.1007/978-981-16-8918-5_1

Nair, P.K.R., Kumar, B.M., & Nair, V.D. (2021). Soil organic matter (SOM) and nutrient cycling. In An introduction to agroforestry: Four decades of scientific developments (pp. 383-411). Springer International Publishing. https://doi.org/10.1007/978-3-030-75358-0_16

Ntinyari, W., Giweta, M., Mutegi, J., Masso, C., & Gweyi-Onyango, J.P. (2022). Managing agricultural nitrogen losses in crop production and mitigation of climate change effects. In A. Kumar, P. Kumar, S.S. Singh, B.H. Trisasongko, & M. Rani (Eds.), Agriculture, livestock production and aquaculture: Advances for smallholder farming systems Volume 1 (pp. 21-41). Springer International Publishing. https://doi.org/10.1007/978-3-030-93258-9_2

Pan, Y., She, D., Shi, Z., Chen, X., & Xia, Y. (2021). Do biochar and polyacrylamide have synergistic effect on net denitrification and ammonia volatilization in saline soils? Environmental Science and Pollution Research, 28(42), 59974-59987. https://doi.org/10.1007/s11356-021-14886-3

Piotrowska-Długosz, A. (2020). Significance of the enzymes associated with soil C and N transformation. In R. Datta, R.S. Meena, S.I. Pathan, & M.T. Ceccherini (Eds.), Carbon and nitrogen cycling in soil (pp. 399-437). Springer Singapore. https://doi.org/10.1007/978-981-13-7264-3_12

Qi, H., Zhao, Y., Zhao, X., Yang, T., Dang, Q., Wu, J., Lv, P., Wang, H., & Wei, Z. (2020). Effect of manganese dioxide on the formation of humin during different agricultural organic wastes compostable environments: It is meaningful carbon sequestration. Bioresource Technology, 299, 122596. https://doi.org/10.1016/j.biortech.2019.122596

Qi, S., Ding, J., Yang, S., Jiang, Z., & Xu, Y. (2022). Impact of biochar application on ammonia volatilization from paddy fields under controlled irrigation. Sustainability, 14(3), 1337.

Rahim, H.U., Allevato, E., Vaccari, F.P., & Stazi, S.R. (2024). Biochar aged or combined with humic substances: Fabrication and implications for sustainable agriculture and environment—a review. Journal of Soils and Sediments, 24(1), 139-162. https://doi.org/10.1007/s11368-023-03644-2

Rajneesh Kumar, G., Dimuth, N., Shobha, M., Amarendra, S., Islamuddin, N., & Nandkishor, M. (2021). Humic substances: Its toxicology, chemistry and biology associated with soil, plants and environment. In M. Abdelhadi (Ed.), Humic substances (Ch. 6). IntechOpen. https://doi.org/10.5772/intechopen.98518

Ravindiran, G., Rajamanickam, S., Janardhan, G., Hayder, G., Alagumalai, A., Mahian, O., Lam, S.S., & Sonne, C. (2024). Production and modifications of biochar to engineered materials and its application for environmental sustainability: A review. Biochar, 6(1), 62. https://doi.org/10.1007/s42773-024-00350-1

Razzaq, A., Shamsi, S., Ali, A., Ali, Q., Sajjad, M., Malik, A., & Ashraf, M. (2019). Microbial proteases applications. Frontiers in Bioengineering and Biotechnology, 7. https://doi.org/10.3389/fbioe.2019.00110

Ren, K., Xu, M., Li, R., Zheng, L., Liu, S., Reis, S., Wang, H., Lu, C., Zhang, W., Gao, H., Duan, Y., & Gu, B. (2022). Optimizing nitrogen fertilizer use for more grain and less pollution. Journal of Cleaner Production, 360, 132180. https://doi.org/10.1016/j.jclepro.2022.132180

Rizhiya, E.Y., Mukhina, I., Vertebniy, V., Horak, J., Kononchuk, P.Y., & Khomyakov, Y.V. (2017). Soil enzymatic activity and nitrous oxide emission from light-textured spodosol amended with biochar. Agricultural Biology (Sel’skokhozyaistvennaya Biologiya), 52, 464. http://dx.doi.org/10.15389/agrobiology.2017.3.464eng

Rupiasih, N.N., & Vidyasagar, P. (2005). A review: Compositions, structures, properties and applications of humic substances. J Adv Sci and Tech, 8, 16-25.

Sakhiya, A.K., Anand, A., & Kaushal, P. (2020). Production, activation, and applications of biochar in recent times. Biochar, 2(3), 253-285. https://doi.org/10.1007/s42773-020-00047-1

Šimanský, V., Horák, J., & Lukac, M. (2024). Addition of biochar and fertiliser drives changes in soil organic matter and humic substance content in Haplic Luvisol. Land, 13(4), 481. https://doi.org/10.3390/land13040481

Singh Yadav, S.P., Bhandari, S., Bhatta, D., Poudel, A., Bhattarai, S., Yadav, P., Ghimire, N., Paudel, P., Paudel, P., Shrestha, J., & Oli, B. (2023). Biochar application: A sustainable approach to improve soil health. Journal of Agriculture and Food Research, 11, 100498. https://doi.org/10.1016/j.jafr.2023.100498

Singh, H., Northup, B.K., Rice, C.W., & Prasad, P.V.V. (2022a). Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: A meta-analysis. Biochar, 4(1), 8. https://doi.org/10.1007/s42773-022-00138-1

Singh, O., Singh, S., Singh, V. K., & Singh, A. (2022b). Biochar: An organic amendment for sustainable soil health. In C. Baskar, S. Ramakrishna, & A. Daniela La Rosa (Eds.), Encyclopedia of Green Materials (pp. 1-10). Springer Nature Singapore. https://doi.org/10.1007/978-981-16-4921-9_265-1

Solanki, P., Putatunda, C., Kumar, A., Bhatia, R., & Walia, A. (2021). Microbial proteases: Ubiquitous enzymes with innumerable uses. 3 Biotech, 11(10), 428. https://doi.org/10.1007/s13205-021-02928-z

Sun, Q., Yang, X., Meng, J., Lan, Y., Han, X., Chen, W., & Huang, Y. (2022). Long-term effects of straw and straw-derived biochar on humic substances and aggregate-associated humic substances in brown earth soil. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.899935

Tiwari, J., Ramanathan, A.L., Bauddh, K., & Korstad, J. (2023). Humic substances: Structure, function and benefits for agroecosystems—A review. Pedosphere, 33(2), 237-249. https://doi.org/10.1016/j.pedsph.2022.07.008

Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology, 19(1), 191-215. https://doi.org/10.1007/s11157-020-09523-3

Trazzi, P.A., Vashishtha, M., Najser, J., Schmalenberger, A., Kannuchamy, V.K., Leahy, J.J., & Kwapinski, W. (2024). Adsorption of ammonium, nitrate, and phosphate on hydrochars and biochars. Applied Sciences, 14(6), 2280. https://doi.org/10.3390/app14062280

van Zandvoort, I., Koers, E.J., Weingarth, M., Bruijnincx, P.C., Baldus, M., & Weckhuysen, B.M. (2015). Structural characterization of 13C-enriched humins and alkali-treated 13C humins by 2D solid-state NMR. Green Chemistry, 17(8), 4383-4392.

Vasic, V., Kukic, D., Šćiban, M., Djurisic-Mladenovic, N., Velić, N., Pajin, B., Crespo, J., Farre, M., & Šereš, Z. (2023). Lignocellulose-based biosorbents for the removal of contaminants of emerging concern (CECs) from water: A review. Water, 15, 1853. https://doi.org/10.3390/w15101853

Wang, Z., Li, J., Zhang, G., Zhi, Y., Yang, D., Lai, X., & Ren, T. (2020). Characterization of acid-aged biochar and its ammonium adsorption in an aqueous solution. Materials, 13(10), 2270. https://doi.org/10.3390/ma13102270

Yagüe, M., & Lobo, M. (2021). Comparison of laboratory methodologies to determine soil nitrogen mineralization from organic residues. BioResources, 16(4), 8038.

Zayed, O., Hewedy, O.A., Abdelmoteleb, A., Ali, M., Youssef, M.S., Roumia, A.F., Seymour, D., & Yuan, Z.C. (2023). Nitrogen journey in plants: From uptake to metabolism, stress response, and microbe interaction. Biomolecules, 13(10). https://doi.org/10.3390/biom13101443

Zhang, X., Zhao, B., Liu, H., Zhao, Y., & Li, L. (2022). Effects of pyrolysis temperature on biochar’s characteristics and speciation and environmental risks of heavy metals in sewage sludge biochars. Environmental Technology & Innovation, 26, 102288. https://doi.org/10.1016/j.eti.2022.102288

Zhu, L., Sun, H., Liu, L., Zhang, K., Zhang, Y., Li, A., Bai, Z., Wang, G., Liu, X., Dong, H., & Li, C. (2024). Optimizing crop yields while minimizing environmental impact through deep placement of nitrogen fertilizer. Journal of Integrative Agriculture. https://doi.org/10.1016/j.jia.2024.05.012

Downloads

Published

2024-12-19