Biochar and Humic Substances Roles for Nitrogen Transformation in Agriculture
DOI:
https://doi.org/10.23960/jtep-l.v13i4.1442-1452Abstract
Sustainable soil fertility management is crucial for global food security and addressing environmental challenges from modern agriculture. Soil health, alongside water availability, is essential for crop productivity, and soil degradation threatens food security by lowering yields and intensifying climate change. Nitrogen (N) cycling is central to soil fertility, supporting plant growth through nutrient replenishment and microbial activity. However, N is often lost through leaching, volatilization, and denitrification, reducing nitrogen use efficiency (NUE) and contributing to water pollution and greenhouse gas (GHG) emissions. Optimizing nitrogen retention in soils is vital for improving productivity and minimizing environmental harm. Biochar (BC) and humic substances (HSs) have emerged as effective strategies for improving N management. BC enhances soil fertility by increasing soil pH, cation exchange capacity, and water retention, while reducing nutrient leaching and promoting carbon sequestration. HSs, including humic acids (HA), fulvic acids (FA) and humin (HU), improve nutrient cycling by stimulating microbial activity and enhancing nutrient transport. Together, BC and HSs provide synergistic benefits for soil health, particularly in challenging environments like saline or nutrient-depleted soils. This review highlights the roles of BC and HSs in enhancing soil fertility, promoting N mineralization, and improving crop productivity. It emphasizes their potential for sustainable agricultural practices, climate change mitigation, and long-term soil health.
Keywords: Biochar, Climate changes, Humic substances, Remediation, Soil fertility.
References
Adhikary, R., Pal, A., Barman, S., & Maitra, S. (2020). Nitrogen transformation and losses in soil: A cost-effective review study for farmers. International Journal of Chemical Studies, 8(3), 2623–2626. https://doi.org/10.22271/chemi.2020.v8.i3al.9609
Agarwal, P.K., Gupta, K., Lopato, S., & Agarwal, P. (2017). Dehydration responsive element binding transcription factors and their applications for the engineering of stress tolerance. Journal of Experimental Botany, 68(9), 2135–2148. https://doi.org/10.1093/jxb/erx118
Bagnall, D.K., Shanahan, J.F., Flanders, A., Morgan, C.L.S., & Honeycutt, C.W. (2021). Soil health considerations for global food security. Agronomy Journal, 113(6), 4581–4589. https://doi.org/10.1002/agj2.20783
Cao, Z., Deng, F., Wang, R., Li, J., Liu, X., & Li, D. (2023). Bioaugmentation on humification during co-composting of corn straw and biogas slurry. Bioresource Technology, 374, 128756. https://doi.org/10.1016/j.biortech.2023.128756
Chen, M., Liu, D., Shao, X., Li, S., Jin, X., Qi, J., Liu, H., & Li, C. (2024a). Effect of biochar types and rates on SOC and its active fractions in tropical farmlands of China. Agronomy, 14(4), 676. https://doi.org/10.3390/agronomy14040676
Chen, T., Cheng, R., Xiao, W., Shen, Y., Wang, L., Sun, P., Zhang, M., & Li, J. (2024b). Nitrogen addition enhances soil nitrogen mineralization through an increase in mineralizable organic nitrogen and the abundance of functional genes. Journal of Soil Science and Plant Nutrition, 24(1), 975–987. https://doi.org/10.1007/s42729-023-01600-0
Dai, Z., Xiong, X., Zhu, H., Xu, H., Leng, P., Li, J., Tang, C., & Xu, J. (2021). Association of biochar properties with changes in soil bacterial, fungal and fauna communities and nutrient cycling processes. Biochar, 3(3), 239–254. https://doi.org/10.1007/s42773-021-00099-x
Diallo, M.S., Simpson, A., Gassman, P., Faulon, J.L., Johnson, J.H., Goddard, W.A., & Hatcher, P.G. (2003). 3-D structural modeling of humic acids through experimental characterization, computer assisted structure elucidation and atomistic simulations. 1. Chelsea soil humic acid. Environmental Science & Technology, 37(9), 1783–1793.
Ding, Y., Gao, X., Shu, D., Siddique, K.H.M., Song, X., Wu, P., Li, C., & Zhao, X. (2024). Enhancing soil health and nutrient cycling through soil amendments: Improving the synergy of bacteria and fungi. Science of The Total Environment, 923, 171332. https://doi.org/10.1016/j.scitotenv.2024.171332
Egyir, M., Luyima, D., Kim, S.H., & Oh, T.K. (2022). Effects of modified and nitrogen-enriched biochars on ammonia emissions and crop yields under a field environment. Water, Air, & Soil Pollution, 233(11), 439. https://doi.org/10.1007/s11270-022-05871-8
Elrys, A.S., Ali, A., Zhang, H., Cheng, Y., Zhang, J., Cai, Z.-C., Müller, C., & Chang, S.X. (2021). Patterns and drivers of global gross nitrogen mineralization in soils. Global Change Biology, 27(22), 5950–5962. https://doi.org/10.1111/gcb.15851
Francini, A., Giro, A., & Ferrante, A. (2019). Biochemical and molecular regulation of phenylpropanoids pathway under abiotic stresses. Plant signaling molecules, (pp. 183–192). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-816451-8.00011-3
Gabasawa, A.I., Abubakar, G.A., & Obemah, D.N. (2024). Soil regeneration and microbial community on terrestrial food chain. In S.A. Aransiola, B.R. Babaniyi, A.B. Aransiola, & N.R. Maddela (Eds.), Prospects for soil regeneration and its impact on environmental protection (pp. 243–267). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-53270-2_11
Gadd, G.M. (2013). Microbial roles in mineral transformations and metal cycling in the Earth’s critical zone. In J. Xu & D.L. Sparks (Eds.), Molecular environmental soil science (pp. 115–165). Springer Netherlands. https://doi.org/10.1007/978-94-007-4177-5_6
Gan, L.-h., Yan, Z.-r., Ma, Y.-f., Zhu, Y.-y., Li, X.-y., Xu, J., & Zhang, W. (2019). pH dependence of the binding interactions between humic acids and bisphenol A—A thermodynamic perspective. Environmental Pollution, 255, 113292. https://doi.org/10.1016/j.envpol.2019.113292
Ghadirnezhad Shiade, S.R., Fathi, A., Minkina, T., Wong, M.H., & Rajput, V.D. (2024). Biochar application in agroecosystems: A review of potential benefits and limitations. Environment, Development and Sustainability, 26(8), 19231–19255. https://doi.org/10.1007/s10668-023-03470-z
Gomiero, T. (2016). Soil degradation, land scarcity and food security: Reviewing a complex challenge. Sustainability, 8(3), 281. https://doi.org/10.3390/su8030281
Haider, M.I.S., Liu, G., Yousaf, B., Arif, M., Aziz, K., Ashraf, A., Safeer, R., Ijaz, S., & Pikon, K. (2024). Synergistic interactions and reaction mechanisms of biochar surface functionalities in antibiotics removal from industrial wastewater. Environmental Pollution, 356, 124365. https://doi.org/10.1016/j.envpol.2024.124365
Hailegnaw, N.S., Mercl, F., PraÄke, K., Száková, J., & TlustoÅ¡, P. (2019). Mutual relationships of biochar and soil pH, CEC, and exchangeable base cations in a model laboratory experiment. Journal of Soils and Sediments, 19(5), 2405–2416. https://doi.org/10.1007/s11368-019-02264-z
Hasanuzzaman, M., Nowroz, F., Raihan, M.R.H., Siddika, A., Alam, M.M., & Prasad, P.V.V. (2024). Application of biochar and humic acid improves the physiological and biochemical processes of rice (Oryza sativa L.) in conferring plant tolerance to arsenic-induced oxidative stress. Environmental Science and Pollution Research, 31(1), 1562–1575. https://doi.org/10.1007/s11356-023-31119-x
He, D., Luo, Y., & Zhu, B. (2024). Feedstock and pyrolysis temperature influence biochar properties and its interactions with soil substances: Insights from a DFT calculation. Science of The Total Environment, 922, 171259. https://doi.org/10.1016/j.scitotenv.2024.171259
He, H.-T., Xing, L.-C., Zhang, J.-S., & Tang, M. (2016). Binding characteristics of Cd²âº, Zn²âº, Cu²âº, and Li⺠with humic substances: Implication to trace element enrichment in low-rank coals. Energy Exploration & Exploitation, 34(5), 735–745. https://doi.org/10.1177/0144598716656067
Heidari Dehno, A., & Mohtadi, A. (2018). The effect of different iron concentrations on lead accumulation in hydroponically grown Matthiola flavida Boiss. Ecological Research, 33(4), 757–765. https://doi.org/10.1007/s11284-018-1558-4
Holatko, J., Hammerschmiedt, T., Latal, O., Kintl, A., Mustafa, A., Baltazar, T., Malicek, O., & Brtnicky, M. (2022a). Deciphering the effectiveness of humic substances and biochar modified digestates on soil quality and plant biomass accumulation. Agronomy, 12(7), 1587. https://doi.org/10.3390/agronomy12071587
Holatko, J., Hammerschmiedt, T., Mustafa, A., Kintl, A., Radziemska, M., Baltazar, T., Jaskulska, I., Malicek, O., & Brtnicky, M. (2022b). Carbon-enriched organic amendments differently affect the soil chemical, biological properties and plant biomass in a cultivation time-dependent manner. Chemical and Biological Technologies in Agriculture, 9(1), 52. https://doi.org/10.1186/s40538-022-00319-x
Hossain, M.Z., Bahar, M.M., Sarkar, B., Donne, S.W., Ok, Y.S., Palansooriya, K.N., Kirkham, M.B., Chowdhury, S., & Bolan, N. (2020). Biochar and its importance on nutrient dynamics in soil and plant. Biochar, 2(4), 379–420. https://doi.org/10.1007/s42773-020-00065-z
Hu, H., Xi, B., & Tan, W. (2021). Effects of sulfur-rich biochar amendment on microbial methylation of mercury in rhizosphere paddy soil and methylmercury accumulation in rice. Environmental Pollution, 286, 117290. https://doi.org/10.1016/j.envpol.2021.117290
Hung, C.-Y., Hussain, N., Husk, B.R., & Whalen, J.K. (2021). Ammonia volatilization from manure mixed with biochar. Canadian Journal of Soil Science, 102(1), 177–186. https://doi.org/10.1139/cjss-2021-0029
Ippolito, J.A., Cui, L., Kammann, C., Wrage-Mönnig, N., Estavillo, J.M., Fuertes-Mendizabal, T., Cayuela, M.L., Sigua, G., Novak, J., Spokas, K., & Borchard, N. (2020). Feedstock choice, pyrolysis temperature and type influence biochar characteristics: A comprehensive meta-data analysis review. Biochar, 2(4), 421–438. https://doi.org/10.1007/s42773-020-00067-x
Janu, R., Mrlik, V., Ribitsch, D., Hofman, J., SedláÄek, P., Bielská, L., & Soja, G. (2021). Biochar surface functional groups as affected by biomass feedstock, biochar composition and pyrolysis temperature. Carbon Resources Conversion, 4, 36–46. https://doi.org/10.1016/j.crcon.2021.01.003
Jarosz, R., Mierzwa-Hersztek, M., Gondek, K., Kopeć, M., Lošák, T., & MarciÅ„ska-Mazur, L. (2022). Changes in quantity and quality of organic matter in soil after application of poultry litter and poultry litter biochar—5-year field experiment. Biomass Conversion and Biorefinery, 12(7), 2925–2934. https://doi.org/10.1007/s13399-020-01005-4
Jin, X., Zhang, T., Hou, Y., Bol, R., Zhang, X., Zhang, M., Yu, N., Meng, J., Zou, H., & Wang, J. (2024). Review on the effects of biochar amendment on soil microorganisms and enzyme activity. Journal of Soils and Sediments, 24(7), 2599–2612. https://doi.org/10.1007/s11368-024-03841-7
Kandeler, K. (1996). Nitrogen mineralization. In F. Schinner, R. Öhlinger, E. Kandeler, & R. Margesin (Eds.), Methods in soil biology (pp. 135–143). Springer. https://doi.org/10.1007/978-3-642-60966-4_9
Kansara, K., Sathish, C., Vinu, A., Kumar, A., & Karakoti, A.S. (2021). Assessment of the impact of abiotic factors on the stability of engineered nanomaterials in fish embryo media. Emergent Materials, 4(5), 1339–1350. https://doi.org/10.1007/s42247-021-00224-3
Kononova, Ma.M. (2013). Soil organic matter: Its nature, its role in soil formation and in soil fertility. Elsevier.
Lee, M.-H., Ok, Y.S., & Hur, J. (2018). Dynamic variations in dissolved organic matter and the precursors of disinfection by-products leached from biochars: Leaching experiments simulating intermittent rain events. Environmental Pollution, 242, 1912–1920. https://doi.org/10.1016/j.envpol.2018.07.073
Leng, L., Xiong, Q., Yang, L., Li, H., Zhou, Y., Zhang, W., Jiang, S., Li, H., & Huang, H. (2021). An overview on engineering the surface area and porosity of biochar. Science of The Total Environment, 763, 144204. https://doi.org/10.1016/j.scitotenv.2020.144204
Li, F., Men, S., Zhang, S., Huang, J., Puyang, X., Wu, Z., & Huang, Z. (2020). Responses of low-quality soil microbial community structure and activities to application of a mixed material of humic acid, biochar, and super absorbent polymer. Journal of Microbiology and Biotechnology, 30(9), 1310–1320. https://doi.org/10.4014/jmb.2003.03047
Ma, Y., Xie, W., Yao, R., Feng, Y., Wang, X., Xie, H., Feng, Y., & Yang, J. (2024). Biochar and hydrochar application influence soil ammonia volatilization and the dissolved organic matter in salt-affected soils. Science of The Total Environment, 926, 171845. https://doi.org/10.1016/j.scitotenv.2024.171845
Mahala, D.M., Maheshwari, H.S., Yadav, R.K., Prabina, B.J., Bharti, A., Reddy, K.K., Kumawat, C., & Ramesh, A. (2020). Microbial transformation of nutrients in soil: An overview. In S.K. Sharma, U.B. Singh, P.K. Sahu, H.V. Singh, & P.K. Sharma (Eds.), Rhizosphere microbes: Soil and plant functions (pp. 175–211). Springer. https://doi.org/10.1007/978-981-15-9154-9_7
Manu, M.K., Wang, C., Li, D., Varjani, S., Xu, Y., Ladumor, N., Lui, M., Zhou, J., & Wong, J.W.C. (2021). Biodegradation kinetics of ammonium enriched food waste digestate compost with biochar amendment. Bioresource Technology, 341, 125871. https://doi.org/10.1016/j.biortech.2021.125871
Masud, M.A.A., Shin, W.S., Sarker, A., Septian, A., Das, K., Deepo, D.M., Iqbal, M.A., Islam, A.R.M.T., & Malafaia, G. (2023). A critical review of sustainable application of biochar for green remediation: Research uncertainty and future directions. Science of The Total Environment, 904, 166813. https://doi.org/10.1016/j.scitotenv.2023.166813
Mi, W., Ma, Q., Cao, X., & Wu, L. (2023). Soil fertility management for sustainable crop production. Agronomy, 13(4), 1026. https://doi.org/10.3390/agronomy13041026
Nadarajah, K.K. (2022). Soil fertility and sustainable agriculture. In S.K. Nayak, B. Baliyarsingh, I. Mannazzu, A. Singh, & B.B. Mishra (Eds.), Advances in Agricultural and Industrial Microbiology: Volume 1: Microbial diversity and application in agroindustry (pp. 1-16). Springer Nature Singapore. https://doi.org/10.1007/978-981-16-8918-5_1
Nair, P.K.R., Kumar, B.M., & Nair, V.D. (2021). Soil organic matter (SOM) and nutrient cycling. In An introduction to agroforestry: Four decades of scientific developments (pp. 383-411). Springer International Publishing. https://doi.org/10.1007/978-3-030-75358-0_16
Ntinyari, W., Giweta, M., Mutegi, J., Masso, C., & Gweyi-Onyango, J.P. (2022). Managing agricultural nitrogen losses in crop production and mitigation of climate change effects. In A. Kumar, P. Kumar, S.S. Singh, B.H. Trisasongko, & M. Rani (Eds.), Agriculture, livestock production and aquaculture: Advances for smallholder farming systems Volume 1 (pp. 21-41). Springer International Publishing. https://doi.org/10.1007/978-3-030-93258-9_2
Pan, Y., She, D., Shi, Z., Chen, X., & Xia, Y. (2021). Do biochar and polyacrylamide have synergistic effect on net denitrification and ammonia volatilization in saline soils? Environmental Science and Pollution Research, 28(42), 59974-59987. https://doi.org/10.1007/s11356-021-14886-3
Piotrowska-Długosz, A. (2020). Significance of the enzymes associated with soil C and N transformation. In R. Datta, R.S. Meena, S.I. Pathan, & M.T. Ceccherini (Eds.), Carbon and nitrogen cycling in soil (pp. 399-437). Springer Singapore. https://doi.org/10.1007/978-981-13-7264-3_12
Qi, H., Zhao, Y., Zhao, X., Yang, T., Dang, Q., Wu, J., Lv, P., Wang, H., & Wei, Z. (2020). Effect of manganese dioxide on the formation of humin during different agricultural organic wastes compostable environments: It is meaningful carbon sequestration. Bioresource Technology, 299, 122596. https://doi.org/10.1016/j.biortech.2019.122596
Qi, S., Ding, J., Yang, S., Jiang, Z., & Xu, Y. (2022). Impact of biochar application on ammonia volatilization from paddy fields under controlled irrigation. Sustainability, 14(3), 1337.
Rahim, H.U., Allevato, E., Vaccari, F.P., & Stazi, S.R. (2024). Biochar aged or combined with humic substances: Fabrication and implications for sustainable agriculture and environment—a review. Journal of Soils and Sediments, 24(1), 139-162. https://doi.org/10.1007/s11368-023-03644-2
Rajneesh Kumar, G., Dimuth, N., Shobha, M., Amarendra, S., Islamuddin, N., & Nandkishor, M. (2021). Humic substances: Its toxicology, chemistry and biology associated with soil, plants and environment. In M. Abdelhadi (Ed.), Humic substances (Ch. 6). IntechOpen. https://doi.org/10.5772/intechopen.98518
Ravindiran, G., Rajamanickam, S., Janardhan, G., Hayder, G., Alagumalai, A., Mahian, O., Lam, S.S., & Sonne, C. (2024). Production and modifications of biochar to engineered materials and its application for environmental sustainability: A review. Biochar, 6(1), 62. https://doi.org/10.1007/s42773-024-00350-1
Razzaq, A., Shamsi, S., Ali, A., Ali, Q., Sajjad, M., Malik, A., & Ashraf, M. (2019). Microbial proteases applications. Frontiers in Bioengineering and Biotechnology, 7. https://doi.org/10.3389/fbioe.2019.00110
Ren, K., Xu, M., Li, R., Zheng, L., Liu, S., Reis, S., Wang, H., Lu, C., Zhang, W., Gao, H., Duan, Y., & Gu, B. (2022). Optimizing nitrogen fertilizer use for more grain and less pollution. Journal of Cleaner Production, 360, 132180. https://doi.org/10.1016/j.jclepro.2022.132180
Rizhiya, E.Y., Mukhina, I., Vertebniy, V., Horak, J., Kononchuk, P.Y., & Khomyakov, Y.V. (2017). Soil enzymatic activity and nitrous oxide emission from light-textured spodosol amended with biochar. Agricultural Biology (Sel’skokhozyaistvennaya Biologiya), 52, 464. http://dx.doi.org/10.15389/agrobiology.2017.3.464eng
Rupiasih, N.N., & Vidyasagar, P. (2005). A review: Compositions, structures, properties and applications of humic substances. J Adv Sci and Tech, 8, 16-25.
Sakhiya, A.K., Anand, A., & Kaushal, P. (2020). Production, activation, and applications of biochar in recent times. Biochar, 2(3), 253-285. https://doi.org/10.1007/s42773-020-00047-1
Šimanský, V., Horák, J., & Lukac, M. (2024). Addition of biochar and fertiliser drives changes in soil organic matter and humic substance content in Haplic Luvisol. Land, 13(4), 481. https://doi.org/10.3390/land13040481
Singh Yadav, S.P., Bhandari, S., Bhatta, D., Poudel, A., Bhattarai, S., Yadav, P., Ghimire, N., Paudel, P., Paudel, P., Shrestha, J., & Oli, B. (2023). Biochar application: A sustainable approach to improve soil health. Journal of Agriculture and Food Research, 11, 100498. https://doi.org/10.1016/j.jafr.2023.100498
Singh, H., Northup, B.K., Rice, C.W., & Prasad, P.V.V. (2022a). Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: A meta-analysis. Biochar, 4(1), 8. https://doi.org/10.1007/s42773-022-00138-1
Singh, O., Singh, S., Singh, V. K., & Singh, A. (2022b). Biochar: An organic amendment for sustainable soil health. In C. Baskar, S. Ramakrishna, & A. Daniela La Rosa (Eds.), Encyclopedia of Green Materials (pp. 1-10). Springer Nature Singapore. https://doi.org/10.1007/978-981-16-4921-9_265-1
Solanki, P., Putatunda, C., Kumar, A., Bhatia, R., & Walia, A. (2021). Microbial proteases: Ubiquitous enzymes with innumerable uses. 3 Biotech, 11(10), 428. https://doi.org/10.1007/s13205-021-02928-z
Sun, Q., Yang, X., Meng, J., Lan, Y., Han, X., Chen, W., & Huang, Y. (2022). Long-term effects of straw and straw-derived biochar on humic substances and aggregate-associated humic substances in brown earth soil. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.899935
Tiwari, J., Ramanathan, A.L., Bauddh, K., & Korstad, J. (2023). Humic substances: Structure, function and benefits for agroecosystems—A review. Pedosphere, 33(2), 237-249. https://doi.org/10.1016/j.pedsph.2022.07.008
Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology, 19(1), 191-215. https://doi.org/10.1007/s11157-020-09523-3
Trazzi, P.A., Vashishtha, M., Najser, J., Schmalenberger, A., Kannuchamy, V.K., Leahy, J.J., & Kwapinski, W. (2024). Adsorption of ammonium, nitrate, and phosphate on hydrochars and biochars. Applied Sciences, 14(6), 2280. https://doi.org/10.3390/app14062280
van Zandvoort, I., Koers, E.J., Weingarth, M., Bruijnincx, P.C., Baldus, M., & Weckhuysen, B.M. (2015). Structural characterization of 13C-enriched humins and alkali-treated 13C humins by 2D solid-state NMR. Green Chemistry, 17(8), 4383-4392.
Vasic, V., Kukic, D., Šćiban, M., Djurisic-Mladenovic, N., Velić, N., Pajin, B., Crespo, J., Farre, M., & Šereš, Z. (2023). Lignocellulose-based biosorbents for the removal of contaminants of emerging concern (CECs) from water: A review. Water, 15, 1853. https://doi.org/10.3390/w15101853
Wang, Z., Li, J., Zhang, G., Zhi, Y., Yang, D., Lai, X., & Ren, T. (2020). Characterization of acid-aged biochar and its ammonium adsorption in an aqueous solution. Materials, 13(10), 2270. https://doi.org/10.3390/ma13102270
Yagüe, M., & Lobo, M. (2021). Comparison of laboratory methodologies to determine soil nitrogen mineralization from organic residues. BioResources, 16(4), 8038.
Zayed, O., Hewedy, O.A., Abdelmoteleb, A., Ali, M., Youssef, M.S., Roumia, A.F., Seymour, D., & Yuan, Z.C. (2023). Nitrogen journey in plants: From uptake to metabolism, stress response, and microbe interaction. Biomolecules, 13(10). https://doi.org/10.3390/biom13101443
Zhang, X., Zhao, B., Liu, H., Zhao, Y., & Li, L. (2022). Effects of pyrolysis temperature on biochar’s characteristics and speciation and environmental risks of heavy metals in sewage sludge biochars. Environmental Technology & Innovation, 26, 102288. https://doi.org/10.1016/j.eti.2022.102288
Zhu, L., Sun, H., Liu, L., Zhang, K., Zhang, Y., Li, A., Bai, Z., Wang, G., Liu, X., Dong, H., & Li, C. (2024). Optimizing crop yields while minimizing environmental impact through deep placement of nitrogen fertilizer. Journal of Integrative Agriculture. https://doi.org/10.1016/j.jia.2024.05.012
Downloads
Published
Issue
Section
License
- Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International Lice that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Teknik Pertanian Lampung
JTEPL is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.