Rainfall Thresholds Analysis for Early Warning of Landslides in The Bompon Watershed

Authors

  • Milya Aflah Ulul Albab Universitas Gajah Mada
  • Bayu Dwi Apri Nugroho Universitas Gadjah Mada

DOI:

https://doi.org/10.23960/jtep-l.v13i3.628-636

Abstract

The transitional zone between the central and southern morphologies of Java is characterized by steep slopes and thick soil. On the other hand, high rainfall in the area poses a potential threat of landslide hazards. This research is conducted in the Bompon Watershed, located in the transitional zone between Mount Sumbing and the Menoreh Mountains. This study aims to examine the rainfall dynamics leading to landslides in the Bompon Watershed using rainfall threshold analysis. Intensity and duration are selected as parameters to establish the rainfall threshold model. The research findings indicate that long-duration rainfall is the dominant cause of landslides in the Bompon Watershed. High-intensity rainfall can trigger landslides when lasting for more than one day. The established rainfall threshold equation in the Bompon Watershed is I = , where I is intensity and D is duration. The effects of long-duration rainfall include raising the groundwater level, thereby increasing the slope load. The presence of clay in the Bompon Watershed can hinder proper rainwater infiltration. Poorly infiltrated water adds to the slope load and induces slope instability. The calculated rainfall threshold can serve as the basis for early landslide warning systems.

 

Keywords: Landslide, Rainfall threshold, Bompon watershed, Rrainfall intensity, Rainfall duration

References

Almeida, W.S.de., Seitz, S., Oliveira, L.F.C.de., & Carvalho, D.F.de. (2021). Duration and intensity of rainfall events with the same erosivity change sediment yield and runoff rates. International Soil and Water Conservation Research, 9(1), 69–75. https://doi.org/10.1016/j.iswcr.2020.10.004.

Akrami, S.A., El-Shafie, A., Naseri, M., & Santos, C.A.G. (2014). Rainfall data analyzing using moving average (MA) model and wavelet multi-resolution intelligent model for noise evaluation to improve the forecasting accuracy. Neural Computing & Applications, 25, 1853–1861. https://doi.org/10.1007/s00521-014-1675-0.

Arrisaldi, T., Wilopo, W., & Fathani, T.F. (2021). Landslide susceptibility mapping and their rainfall thresholds model in Tinalah Watershed, Kulon Progo District, Yogyakarta Special Region, Indonesia. Journal of Applied Geology, 6(2), 112. https://doi.org/10.22146/jag.59185.

Basofi, A., Fariza, A., Ahsanm A. S., & Kamal, I.M. (2015). A Comparison between natural and head/tail breaks in LSI (landslide susceptibility index) classification for landslide susceptibility mapping : A case study in Ponorogo, East Java, Indonesia. International Conference on Science in Information Technology (ICSITech). https://doi.org/DOI:10.1109/ICSITech.2015.7407828.

BMKG. (2018, December). Siaran Pers Perkembangan Musim Hujan di Akhir Tahun 2018 | BMKG. https://www.bmkg.go.id/berita/?p=siaran-pers-perkembangan-musim-hujan-di-akhir-tahun-2018&lang=ID&tag=press-release.

BMKG. (2019, December). Waspada Cuaca Ekstrem pada Libur Natal 2019 dan Tahun Baru 2020. Accerred (24-01-2024) from: https://www.bmkg.go.id/berita/?p=waspada-cuaca-ekstrem-pada-libur-natal-2019-dan-tahun-baru-2020&lang=ID&tag=cuaca-ekstrem.

BNPB. (2012). Perka No 2 Tahun 2012 Tentang Pedoman Umum Pengkajian Risiko Bencana 2106.

Chen, X., & Lan, J. (2021). Impact of slope stability changes on landslide activity near the epicenter of the 2008 Wenchuan Ms8.0 earthquake, China. Bulletin of Engineering Geology and the Environment, 80, 5259-4270 . https://doi.org/10.1007/s10064-021-02147-z/Published.

Chikalamo, E.E., Mavrouli, O.C., Ettema, J., van Westen, C.J., Muntohar, A.S., & Mustofa, A. (2020). Satellite-derived rainfall thresholds for landslide early warning in Bogowonto Catchment, Central Java, Indonesia. International Journal of Applied Earth Observation and Geoinformation, 89. https://doi.org/10.1016/j.jag.2020.102093.

Chin. W.W. (1998). The partial least squares approach to SEM. Modern Methods for Business Research, 10, 295–336.

Faozi, M.R., & Sartohadi, J. (2018). Pemetaan Geomorfologi Detail Menggunakan Step-Wise-Grid di Daerah Aliran Sungan (DAS) Bompon Kabupaten Magelang, Jawa Tengah.

Guo, B., Pei, X., Xu, M., & Li, T. (2022). Analyzing rainfall threshold for shallow landslides using physically based modeling in Rasuwa District, Nepal. Water (Switzerland), 14(24). https://doi.org/10.3390/w14244074.

Haryanto, A., Iryani, D.A., Hasanudin, U., Telaumbanua, M., Triyono, S., & Hidayat, W. (2021). Biomass fuel from oil palm empty fruit bunch pellet: Potential and challenges. Procedia Environmental Science, Engineering and Management, 8(1), 33–42.

Huang, F., Chen, J., Liu, W., Huang, J., Hong, H., & Chen, W. (2022). Regional rainfall-induced landslide hazard warning based on landslide susceptibility mapping and a critical rainfall threshold. Geomorphology, 408. https://doi.org/10.1016/j.geomorph.2022.108236.

Murali, A., & Katsumi, K.T. (2020). Developments in Geotechnical Engineering. Geotechnics for Natural Disaster Mitigation and Management. https://doi.org/https://doi.org/10.1007/978-981-13-8828-6.

Pamungkas, Z., & Sartohadi, J. (2018). Kajian Stabilitas Lereng Kawasan Longsor di Sub-DAS Bompon Kabupaten Magelang.

Pinchuk, V.A., & Kuzmin, A.V. (2019). Method of approximating experimental data on fuel combustion. International Journal of Energy for a Clean Environment, 20(3), 261–272. https://doi.org/10.1615/InterJEnerCleanEnv.2019032466.

Pratiwi, E.S., Sartohadi, J., & Wahyudi. (2019). Geoelectrical prediction for sliding plane layers of rotational landslide at the volcanic transitional landscapes in Indonesia. IOP Conference Series: Earth and Environmental Science, 286(1). https://doi.org/10.1088/1755-1315/286/1/012028.

Purwaningsih, R., Sartohadi, J., & Anggri, M. (2020). Trees and crops arrangement in the agroforestry system based on slope units to control landslide reactivation on volcanic foot slopes in Java, Indonesia. Land, 9(9). https://doi.org/10.3390/LAND9090327.

Sartohadi, J., Harlin, J.P.N.A., Nurudin, M., & Wahyudi, W. (2018). The ecological perspective of landslides at soils with high clay content in the middle bogowonto watershed, central Java, Indonesia. Applied and Environmental Soil Science, 2018. https://doi.org/10.1155/2018/2648185.

Setyo, M.A. (2008). Toward regional rainfall threshold for landslide occurrence In Yogyakarta and Central Of Java. Jurnal Teknik Sipil Universitas Cokroaminoto Yogyakarta, 3.

Setyo, M.A., Ikhsan, J., & Soebowo, E. (2013). Mechanism of rainfall triggering landslides in Kulonprogo, Indonesia.

Sun, Y., Yang, K., Hu, R., Wang, G., & Lu, J. (2022). Model test and numerical simulation of slope instability process induced by rainfall. Water (Switzerland), 14(24). https://doi.org/10.3390/w14243997.

Yoesep, B. (2016). Keterdapatan Sensitive Clay Pada Lokasi Longsorlahan di DAS Bompon, Kabupaten Magelang, Jawa Tengah. Universitas Gadjah Mada.

Downloads

Published

2024-07-05