Classification of Roasting Level of Coffee Beans Using Convolutional Neural Network with MobileNet Architecture for Android Implementation

Authors

  • Isran Mohamad Pakaya Universitas Gadjah Mada
  • Radi Radi Universitas Gadjah Mada
  • Bambang Purwantana Universitas Gadjah Mada

DOI:

https://doi.org/10.23960/jtep-l.v13i3.924-932

Abstract

The roasting process has a significant impact on the aroma profile and taste of coffee making it an essential stage in the coffee processing. Currently, the classification of coffee bean roasting levels still relies on subjective human visual assessment, which can lead to errors due to fatigue or negligence. To overcome this problem, a classification system was developed using computer vision technology with a deep learning approach. The present study designed a coffee bean roasting level classification system based on image analysis integrated within an Android application. The Convolutional Neural Network (CNN) model with the MobileNet architecture was used to identify and classify coffee beans based on their roasting level. Two CNN models, namely CNN Alpha and CNN Beta were used in this study. The dataset included 1.600 coffee bean images, with 1.200 images used to train the model and 400 images used to test the accuracy. In this experiment, the input image had an optimal size of 70x70 pixels, a learning rate of 0.0001, and 100 epochs for both models. The model training and testing results in the highest accuracy of 98-88% in 6.40-0.0012 minutes.The application test results obtained 93.55% accuracy, 97.06% precision, and 96.67% recall. These results indicate that this model and application function optimally in classifying coffee bean roasting levels accurately. Overall, this study reveals the potential of integrating CNN with the MobileNet architecture into an Android-based application to change the way of roasting level classification, as well as to improve efficiency and accuracy.

 

Keywords: Coffee, Roasting, Convolutional Neural Network, MobileNet, Android.

Author Biographies

  • Isran Mohamad Pakaya, Universitas Gadjah Mada
    Department of Agricultural Engineering, Faculty of Agricultural Technology
  • Radi Radi, Universitas Gadjah Mada
    Department of Agricultural Engineering, Faculty of Agricultural Technology
  • Bambang Purwantana, Universitas Gadjah Mada
    Department of Agricultural Engineering, Faculty of Agricultural Technology

References

Azizah, L.M., Umayah, S.F., & Fajar, F. (2018). Deteksi kecacatan permukaan buah manggis menggunakan metode deep learning dengan konvolusi multilayer. Semesta Teknika, 21(2), 230–36. https://doi.org/10.18196/st.212229.

BPS (Badan Pusat Statistik). (2022). Statistik Kopi Indonesia 2021. Badan Pusat Statistik. Jakarta.

Batubara, A., Yusuf, A., & Widyasanti, A. (2019). Uji kinerja dan analisis ekonomi mesin roasting kopi (Studi kasus di Taman Teknologi Pertanian Cikajang-Garut). Teknoktan Journal, 13(1), 1–7. https://doi.org/10.24198/jt.vol13n1.1.

Hendriyana, H. & Maulana, Y.H. (2021). Identifikasi jenis kayu menggunakan convolutional neural network dengan arsitektur mobilenet. Jurnal Resti, 4(1). https://doi.org/10.29207/resti.v4i1.1445.

Hernández, J.A., Heyd, B., & G. Trystram. (2008). Prediction of brightness and surface area kinetics during coffee roasting. Journal of Food Engineering, 89(2),156–63. https://doi.org/10.1016/j.jfoodeng.2008.04.026.

Howard, A.G., Wang, W., Sandler, M., Zhu, Y., Chu, G., Chen, L.C., Chen, B., Ruoming, P., Vasudan, V., Le, Q.V., Adam, H., & Tan, M. (2019). Searching for mobilenetV3. Computer Vision and Pattern Recognition.

Ibrahim, N., Lestary, G.A., Hanafi, F.S., Saleh, K., Pratiwi, N.K.C., Haq, M.S., & Mastur, A.I. (2022). Klasifikasi tingkat kematangan pucuk daun teh menggunakan metode convolutional neural network. Jurnal Teknik Energi Elektrik, 10(1), 162–76.

Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep Learning. Nature, 521, 436–44. https://doi.org/10.1038/nature14539

Marhaenanto, B., Soedibyo, D.W., & Farid, M. (2015). Penentuan lama sangrai kopi terhadap variasi derajat sangrai menggunakan model warna RGB pada pengolahan citra digital (digital image processing). Jurnal Agroteknologi, 09(02), 102–11.

Michael, E.H., Prilianti, K.R., & Subianto, M. (2020). Rancang bangun aplikasi klasifikasi tingkat kematangan sangrai kopi melalui citra digital menggunakan CNN (Convolutional Neural Network) berbasis android. Jurnal Ilmiah Sainsbertek, 1(1), 1–11.

Muresan, H., & Oltean, M. (2018). Fruit recognition from images using deep learning. Sapientiae Informatica 10(1), 26–42. https://doi.org/10.2478/ausi-2018-0002.

Nugraha, D.A., & Wiguna, A.S. (2018). Klasifikasi tingkat roasting biji kopi menggunakan jaringan syaraf tiruan backpropagation berbasis citra digital. SMARTICS Journal, 4(1), 1–4. https://doi.org/10.21067/smartics.v4i1.2165.

Prastyaningsih, Y., & Kusrini, W. (2021). Sistem temu kembali citra pada level roasting biji kopi menggunakan ekstraksi fitur warna. Jurnal Inovtek Polbeng, 6(2), 222–33. https://doi.org/10.35314/isi.v6i2.2086.

Putra, A.F.S.J., & Santoni, M.M. (2020). Penentuan level kematangan kopi berdasarkan hasil roasting menggunakan etode Deteksi RGB dan klasifikasi minimum distance. Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya, 1(2), 481-492.

Radi, R., Rivai, M., & Purnomo, M.H. (2015a). Combination of first and second order statistical features of bulk grain image for quality grade estimation of green coffee bean. ARPN Journal of Engineering and Applied Sciences, 10(18), 8165-8174.

Radi, R., Rivai, M., & Purnomo, M.H. (2015b). GA-SVC based search applied for optimization of image features subset in quality estimation system of bulk green coffee bean. ARPN Journal of Engineering and Applied Sciences, 10(22), 17177-17185.

Radi, R., Rivai, M., & Purnomo, M.H. (2016). Study on electronic-nose-based quality monitoring system for coffee under roasting. Journal of Circuits, Systems and Computers, 25(10), 16501164. https://doi.org/10.1142/S0218126616501164.

Radi, R., Saragih, E.P., Pratama, B., & Fitri, W.K. (2020). Performance analysis of fuzzy logic controller applied on portable roaster. IOP Conference Series: Earth and Environmental Science, 757. https://doi.org/10.1088/1755-1315/757/1/012022.

Raysyah, S., Arinal, V., & Mulyana, D.I. (2021). Klasifikasi tingkat kematangan buah kopi berdasarkan deteksi warna menggunakan metode KNN dan PCA. Jurnal Sistem Informasi, 8(2), 88–95. https://doi.org/10.30656/jsii.v8i2.3638.

Rivai, M., Radi, R., Purnomo, M.H., Purwantana, B., Purwanto, D., & Sujiati, L. (2020). Electronic nose method for classification of coffee, in comparison with laboratory instrument and sensory test. International Agricultural Engineering Journal, 29(2), 363-375.

Santoso, A., & Ariyanto, G. (2018). Implementasi deep learning berbasis keras untuk pengenalan wajah. Jurnal Teknik Elektro 18(01), 15–21. https://doi.org/10.23917/emitor.v18i01.6235.

Tyas, S.A. (2022). Pengaruh Suhu dan Waktu Roasting Terhadap Kualitas Hasil Roasting Kopi Arabika. [Undergraduate Thesis]. Politeknik Enjinering Pertanian Indonesia, Tangerang.

Winjaya, F. (2017). Rancang Bangun Mesin Pemanggang Biji Kopi berbasis Image Processing dan Akustik. [Master Thesis]. Institut Teknologi Sepuluh Nopember, Surabaya.

Downloads

Published

2024-08-22