Comparison Accuracy of CHIRPS, GSMaP V7, and GSMaP V8 Satellite Rainfall Estimation in Kalimantan

Authors

  • Joko Suryanto STIPER Kutai Timur
  • Joko Krisbiyantoro STIPER Kutai Timur

DOI:

https://doi.org/10.23960/jtep-l.v13i2.470-484

Abstract

The application of satellite product rainfall estimates (SPREs) is growing in hydrometeorology due to limited rainfall measurement. This study aims to compare the accuracy of three SPRE, namely Climate Hazards Group InfraRed Precipitation with Station (CHIRPS), Global Satellite Mapping of Precipitation (GSMaP) Moving Vector with Kalman Filtering (GSMaP-MVK), and near-real-time (GSMaP-NRT) versions 7 and 8, against daily and monthly rainfall measurements from eighteen gauges in Kalimantan from December 2021 to May 2023. Continuous validation includes root mean square error (RMSE), relative bias (RB), and correlation coefficient (CC), and categorical validation consists of a probability of detection (POD), false alarm ratio (FAR), and critical success index (CSI) were used to assess the accuracy of SPREs. The results showed that GSMaP-MVK version 8 has the highest accuracy on a daily scale with an RMSE value of 14.31 mm/day, while the CHIRPS has the highest accuracy on a monthly scale with an RMSE of 81 mm/month. GSMaP version 8 is better than GSMaP version 7, with a difference in RMSE, CC, and RB at 14.2%, 9.7%, and 84%. Categorical validation showed that GSMaP version 8 was 2.13%, higher in POD, 3.95% in CSI, and 10.2% in FAR compared to GSMaP version 7.

 

Keywords:  Accuracy, CHIRPS, GSMaP, Kalimantan, Rain-gauge.

Author Biographies

  • Joko Suryanto, STIPER Kutai Timur
    Agricultural Engineering Study Program
  • Joko Krisbiyantoro, STIPER Kutai Timur
    Agricultural Engineering Study Program

References

Aldrian, E., & Susanto, R.D. (2003). Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. International Journal of Climatology, 23(12), 1435–1452. https://doi.org/10.1002/joc.950.

Arini, E. Y., Hidayat, R., & Faqih, A. (2015). Rainfall simulation using RegCM4 model in Kalimantan during El Nino Southern Oscillation. Procedia Environmental Sciences, 24(2015), 70–86. https://doi.org/10.1016/j.proenv.2015.03.011

Budiyono, B., & Faisol, A. (2021). Evaluasi data climate Hazards Group infrared precipitation with station (chirps) dengan data pembanding automatic weather stations (Aws) dalam mengestimasi curah hujan harian di provinsi Papua Barat. Journal of Agricultural Engineering, 10(1), 64. https://doi.org/10.23960/jtep-l.v10i1.64-72

Darand, M., & Siavashi, Z. (2021). An evaluation of global satellite mapping of precipitation (GSMaP) datasets over Iran. Meteorology and Atmospheric Physics, 133(3), 911–923. https://doi.org/10.1007/s00703-021-00789-y

Derin, Y., Anagnostou, E., Berne, A., Borga, M., Boudevillain, B., Buytaert, W., Chang, C., Chen, H., Delrieu, G., Hsu, Y.C., Lavado-casimiro, W., Manz, B., Moges, S., Nikolopoulos, E.I., Sahlu, D., Salerno, F., Rodriguez-Sanchez, J., Vergara, H.J., & Yilmaz, K.K. (2019). Evaluation of GPM-era global satellite precipitation products over multiple complex terrain regions. Remote Sensing, 11(24). https://doi.org/10.3390/rs11242936

Fatkhuroyan, F., Wati, T., Sukmana, A., & Kurniawan, R. (2018). Validation of satellite daily rainfall estimates over Indonesia. Forum Geografi, 32(2), 170–180. https://doi.org/10.23917/forgeo.v32i2.6288

Fatkhuroyan., & TrinahWati. (2018). Accuracy Assessment of global satellite mapping of precipitation (GSMaP) product over Indonesian maritime continent. IOP Conference Series: Earth and Environmental Science, 187(1). https://doi.org/10.1088/1755-1315/187/1/012060

Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations - a new Environmental record for monitoring extremes. Scientific Data, 2(1), 1–21. https://doi.org/10.1038/sdata.2015.66

Gebregiorgis, A.S., & Hossain, F. (2015). How well can we estimate error variance of satellite precipitation data around the world ?. Atmospheric Research, 154, 39–59. https://doi.org/10.1016/j.atmosres.2014.11.005

Gumindoga, W., Rientjes, T.H.M., Haile, A.T., Makurira, H., & Reggiani, P. (2019). Performance evaluation of CMORPH satellite precipitation product in the Zambezi Basin. International Journal of Remote Sensing, 40(20), 1–20. https://doi.org/10.1080/01431161.2019.1602791

Helda, N., & Ramadhani, M. (2023). Identifikasi kejadian hujan dengan menggunakan data satelit GSMaP (global satellite mapping of precipitation) di Banjarbaru. Buletin Profesi Insinyur, 6(2), 1–6. https://doi.org/10.20527/bpi.v6i2.195

Hsu, J., Huang, W.R., Liu, P.Y., & Li, X. (2021). Validation of chirps precipitation estimates over Taiwan at multiple timescales. Remote Sensing, 13(2), 1–18. https://doi.org/10.3390/rs13020254

Kubota, T., Aonashi, K., Ushio, T., Shige, S., Takayabu, Y.N., Kachi, M., Arai, Y., Tashima, T., Masaki, T., Kawamoto, N., Mega, T., Yamamoto, M.K., Hamada, A., Yamaji, M., Liu, G., & Oki, R. (2020). Global satellite mapping of precipitation (GSMaP) products in the GPM era. In V. Levizzani, C.K.D.B. Kirschbaum, C.D.K.K. Nakamura, & F.J. Turk (Eds.), Satellite Precipitation Measurement, 1, 355–373. Springer Nature Swizerland.

Lei, H., Zhao, H., Ao, T., & Hu, W. (2023). Quantifying the reliability and uncertainty of satellite, reanalysis, and merged precipitation products in hydrological simulations over the topographically diverse basin in Southwest China. Remote Sensing, 15(1). https://doi.org/10.3390/rs15010213.

Lekula, M., Lubczynski, M.W., Shemang, E.M., & Verhoef, W. (2018). Validation of satellite-based rainfall in Kalahari. Physics and Chemistry of the Earth, 105, 84–97. https://doi.org/10.1016/j.pce.2018.02.010.

Li, X., Chen, S., Liang, Z., Huang, C., Li, Z., & Hu, B. (2021). Performance assessment of GSMaP and GPM IMERG products during typhoon mangkhut. Atmosphere, 12(2), 1–13. https://doi.org/10.3390/atmos12020134.

Liu, C.Y., Aryastana, P., Liu, G.R., & Huang, W.R. (2020). Assessment of satellite precipitation product estimates over Bali Island. Atmospheric Research, 244(November), 105032. https://doi.org/10.1016/j.atmosres.2020.105032.

López-Bermeo, C., Montoya, R.D., Caro-Lopera, F.J., & Díaz-García, J.A. (2022). Validation of the accuracy of the CHIRPS precipitation dataset at representing climate variability in a tropical mountainous region of South America. Physics and Chemistry of the Earth, 127(October), 103184. https://doi.org/10.1016/j.pce.2022.103184.

Lu, D., & Yong, B. (2018). Evaluation and hydrological utility of the latest GPM IMERG V5 and GSMaP V7 precipitation products over the Tibetan plateau. Remote Sensing, 10(12). https://doi.org/10.3390/rs10122022.

Lu, D., & Yong, B. (2020). A preliminary assessment of the gauge-adjusted near-real-time GSMaP precipitation estimate over Mainland China. Remote Sensing, 12(1), 1–17. https://doi.org/10.3390/RS12010141.

Mamenun, M., Pawitan, H., & Sopaheluwakan, A. (2014). Validasi dan koreksi data satelit TRMM pada tiga pola hujan di Indonesia. Jurnal Meteorologi dan Geofisika, 15(1), 13–23. https://doi.org/10.31172/jmg.v15i1.169.

Mughal, H.U.R., Mirza, M.A., & Nazir, A. (2020). Statistical analysis and bias correction of GSMaP satellite rainfall data for flash floods modelling over the asin of Ravi river, Pakistan. International Journal on Emerging Technologies, 11(5), 545–557.

Nadeem, M.U., Ghanim, A.A.J., Anjum, M.N., Shangguan, D., Rasool, G., Irfan, M., Niazi, U.M., & Hassan, S. (2022). Multiscale ground validation of satellite and reanalysis precipitation products over diverse climatic and topographic conditions. Remote Sensing, 14(18). https://doi.org/10.3390/rs14184680.

Nepal, B., Shrestha, D., Sharma, S., Shrestha, M.S., Aryal, D., & Shrestha, N. (2021). Assessment of GPM-Era satellite products’ (IMERG and GSMaP) ability to detect precipitation extremes over mountainous country nepal. Atmosphere, 12(2). https://doi.org/10.3390/atmos12020254.

Ning, S., Song, F., Udmale, P., Jin, J., Thapa, B.R., & Ishidaira, H. (2017). Error analysis and evaluation of the latest GSMap and IMERG precipitation products over Eastern China. Advances in Meteorology, 2017(1803492). https://doi.org/10.1155/2017/1803492.

Ocampo-Marulanda, C., Fernández-Ãlvarez, C., Cerón, W.L., Canchala, T., Carvajal-Escobar, Y., & Alfonso-Morales, W. (2022). A spatiotemporal assessment of the high-resolution CHIRPS rainfall dataset in southwestern Colombia using combined principal component analysis. Ain Shams Engineering Journal, 13(5), 101739. https://doi.org/10.1016/j.asej.2022.101739.

Prakash, S., Mitra, A.K., Rajagopal, E.N., & Pai, D.S. (2016). Assessment of TRMM-Based TMPA-3B42 and GSMaP Precipitation Products over India for the Peak Southwest Monsoon Season. International Journal of Climatology, 36(4), 1614–1631. https://doi.org/10.1002/joc.4446

Rahmawati, N., Rahayu, K., & Yuliasari, S.T. (2021). Performance of daily satellite-based rainfall in groundwater basin of Merapi Aquifer System, Yogyakarta. Theoretical and Applied Climatology, 146(1–2), 173–190. https://doi.org/10.1007/s00704-021-03731-9.

Ramadhan, R., Marzuki, M., Yusnaini, H., Muharsyah, R., Suryanto, W., Sholihun, S., Vonnisa, M., Battaglia, A., & Hashiguchi, H. (2022). Capability of GPM IMERG Products for Extreme Precipitation Analysis over the Indonesian Maritime Continent. Remote Sensing, 14(412). https://doi.org/10.3390/rs14020412.

Ramadhan, R., Marzuki, M., Yusnaini, H., Muharsyah, R., Tangang, F., Vonnisa, M., & Harmadi, H. (2023). A Preliminary Assessment of the GSMaP Version 08 Products over Indonesian Maritime Continent against Gauge Data. Remote Sensing, 15(1115). https://doi.org/10.3390/rs15041115.

Roy, D., & Banu, S. (2021). Comparison of Satellite Derived Rainfall Estimations: CMORPH, IMERG and GSMaP with Observed Precipitation. American Journal of Climate Change, 10(04), 407–421. https://doi.org/10.4236/ajcc.2021.10402.

Sa, Z., Mohammed, S., & Shiru, S. (2021). Defining Climate Zone of Borneo Based on Cluster Analysis. Theoretical and Applied Climatology, 145, 1467–1484. https://doi.org/10.1007/s00704-021-03701-1.

Satgé, F., Hussain, Y., Bonnet, M.P., Hussain, B.M., Martinez-Carvajal, H., Akhter, G., & Uagoda, R. (2018). Benefits of the Successive GPM Based Satellite Precipitation Estimates IMERG-V03, -V04, -V05 and GSMaP-V06, -V07 over Diverse Geomorphic and Meteorological Regions of Pakistan. Remote Sensing, 10(1373). https://doi.org/10.3390/rs10091373.

Sheffield, J., Wood, E.F., Pan, M., Beck, H., Coccia, G., Serrat-Capdevila, A., & Verbist, K. (2018). Satellite Remote Sensing for Water Resources Management: Potential for Supporting Sustainable Development in Data-Poor Regions. Water Resources Research, 54(12), 9724–9758. https://doi.org/10.1029/2017WR022437.

Shi, J., Wang, B., Wang, G., Yuan, F., Shi, C., Zhou, X., Zhang, L., & Zhao, C. (2021). Are the latest GSMaP Satellite Precipitation Products Feasible for Daily and Hourly Discharge Simulations in the Yellow River Source Region?. Remote Sensing, 13(4199). https://doi.org/10.3390/rs13214199.

Supari, Tangang, F., Juneng, L., & Aldrian, E. (2016). Spatio-temporal Characteristics of Temperature and Precipitation Extremes in Indonesian Borneo. AIP Conference Proceedings, 1784. https://doi.org/10.1063/1.4966888.

Suryanto, J., Amprin, A., & Anisum, A. (2023). Validasi Curah Hujan Harian CHIRPS Precipitation Satellite Product di Provinsi Kalimantan Barat. Jurnal Ilmiah Rekayasa Pertanian dan Biosistem, 10(1), 129–144. https://doi.org/10.29303/jrpb.v11i1.442.

Wang, H., Yuan, Y., Zeng, S., Li, W., & Tang, X. (2021). Evaluation of satellite-based precipitation products from GPM IMERG and GSMaP over the three-river headwaters region, China. Hydrology Research, 52(6), 1328–1343. https://doi.org/10.2166/NH.2021.029.

Xiao, S., Xia, J., & Zou, L. (2020). Evaluation of Multi-Satellite Precipitation Products and Their Ability in Capturing the Characteristics of Extreme Climate Events over the Yangtze River Basin, China. Water , 12(1179). https://doi.org/10.3390/W12041179.

Yeh, N., Chuang, Y.C., Peng, H.S., & Hsu, K.L. (2020). Bias Adjustment of Satellite Precipitation Estimation Using Ground-Based Observation: Mei-Yu Front Case Studies in Taiwan. Asia-Pacific Journal of Atmospheric Sciences, 56, 485–492. https://doi.org/10.1007/s13143-019-00152-7.

Downloads

Published

2024-05-21

Issue

Section

Articles