Development of Microalgae Growth Monitoring System Using TSD-10 Sensor and ThingSpeak Platform

Authors

  • I Dewa Made Subrata IPB University
  • Mulki Azmi Novrizal IPB University

DOI:

https://doi.org/10.23960/jtep-l.v13i2.394-404

Abstract

Microalgae chlorella sp. is one of the low-level plants that has many benefits and need to be harvested when they have reached optimum density. This study aims to develop a microalgae density monitoring system using the TSD-10 sensor and the ThingSpeak platform. The output voltage from the TSD-10 sensor was calibrated into microalgae density using hemocytometer and then sent wirelessly to the ThingSpeak cloud server using the ESP8266 module. A linear equation of y = −1.633 x +1421.3 was obtained from the calibration process where y is microalgae density (cell/ml) and x is analog to digital conversion (ADC) value of the TSD-10 sensor. The determination coefficient of the calibration and validation process is 0.9921 and 0.938 respectively. The measurement stability was quite good with a standard deviation ranging from 1.15104 cell/ml to 2104 cells/ml of culture medium. The measurement accuracy of the validation process using the RMSE (Root Mean Square Error) formula is 3.25. The time response of the sensor after power on is 5.85 s and the time it takes to display data on the ThingSpeak cloud is 16.03 s. Thus the measuring instrument developed can be said to have a fairly good performance.

 

Keywords: Density monitoring, Microalgae, ThingSpeak platform, Tsd-10 sensor.

Author Biographies

  • I Dewa Made Subrata, IPB University
    Departemen Teknik Mesin dan Biosistem, Fakultas Teknologi Pertanian
  • Mulki Azmi Novrizal, IPB University
    Departemen Teknik Mesin dan Biosistem, Fakultas Teknologi Pertanian

References

Akbar, S.A., Kalbuadi, D.B., & Yudhana, A. (2019). Online monitoring kualitas air waduk berbasis ThingSpeak. Transmisi Jurnal Teknik Elektro, 21(4), 109–115. https://doi.org/10.14710/transmisi.21.4.109-115.

Ayuni, S., & Sari, L.O. (2019). Sistem monitoring dan notifikasi suhu dan kelembaban udara pada jamur tiram menggunakan ESP8266 dengan platform IoT. Jurnal Online Mahasiswa Fakultas Teknik, 6(2), 1–6. https://doi.org/10.20527/flux.v1i1.5928.

Buwono, N.R., & Nurhasanah, R.Q. (2018). Studi pertumbuhan populasi Spirulina sp. pada skala kultur yang berbeda. Jurnal Ilmiah Perikanan dan Kelautan, 10(1), 26–33. https://doi.org/10.20473/jipk.v10i1.8516.

Elystia, S., Muria, S. R., & Pertiwi, S. I. P. (2019). Pemanfaatan mikroalga chlorella sp. untuk produksi lipid dalam media limbah cair hotel dengan variasi rasio C:N dan panjang gelombang cahaya. Jurnal Sains dan Teknologi Lingkungan, 11(1), 25–43. https://doi.org/10.20885/jstl.vol11.iss1.art3.

Gani, I., Jamil, M., & Sardju, A. (2019). Sistem monitoring tinggi permukaan air panci penguapan berbasis node MCU dengan menggunakan teknologi Internet of Things (IoT). Jurnal Protek, 6(2), 53–57. https://doi.org/10.33387/protk.v6i2.1202.

Gultom, S.O. (2018). Mikroalga: Sumber energi terbarukan masa depan. Jurnal Kelautan, 11(1), 95–103. https://doi.org/10.21107/jk.v11i1.3802.

Hutabarat, B.F., Peslinof, M., Afrianto, M.F., & Fendriani, Y. (2023). Sistem basis data pemantauan parameter air berbasis Internet of Things (IoT) dengan platform ThingSpeak. Journal Online of Physics (JOP), 8(2), 42–50. https://doi.org/10.22437/jop.v8i2.24365.

Krishnan, V., Uemura, Y., Thanh, N.T., Khalid, N.A., Osman, N., & Mansor, N. (2015). Three types of marine microalgae and Nannocholoropsis oculata cultivation for potential source of biomass production. Journal of Physics: Conference Series IOP Publishing, 622, 012034. https://doi.org/10.1088/1742-6596/622/1/012034.

Kurnia, D., Prisdayanti, N., Marliani, L., Idar, & Nurochman, Z. (2019). Aktivitas antiinflamasi ekstrak mikroalga laut chlorella vulgaris dengan metode stabilitas sel darah merah manusia. Jurnal Kartika Kimia, 2(2), 57–62. https://doi.org/10.26874/jkk.v2i2.34.

Kurniawan, A., Ristiono, A., & Sulistiadi, S. (2021). Monitoring iklim mikro pada greenhouse secara real time menggunakan Internet of Things (IoT) berbasis ThingSpeak. Jurnal Teknik Pertanian Lampung, 10(4), 468–480. https://doi.org/10.23960/jtep-l.v10i4.468-480.

Ma’rufatin, A. (2016). Effect of harvesting microalgae (Chlorella sp.) continuously to its growth in the fotobioreaktor. Jurnal Rekayasa Lingkungan (JRL), 9(1), 19–30. https://doi.org/10.29122/jrl.v9i1.1987.

Miry, A.H., & Aramice, G.A. (2020). Water monitoring and analytic based ThingSpeak. International Journal of Electrical and Computer Engineering (IJECE), 10(4), 3588–3595. https://doi.org/10.11591/ijece.v10i4.pp3588-3595.

Mufidah, A., Agustono, A., Sudarno, S., & Nindarwi, D.D. (2018). Teknik kultur Chlorella sp. skala laboratorium dan intermediet di Balai Perikanan Budidaya Air Payau (BPBAP) Situbondo Jawa Timur. Journal of Aquaculture and Fish Health, 7(2), 50–56. https://doi.org/10.20473/jafh.v7i2.11246.

Muria, S.R., Chairul, C., & Naomi, D.C. (2020). Pemanfaatan mikroalga Chlorella sp. untuk pengolahan limbah cair kelapa sawit (POME) secara fed batch. Jurnal Sains dan Teknologi, 19(1), 7–12. https://doi.org/10.31258/jst.v19.n1.p7-12.

Prayitno, J. (2016). Pola pertumbuhan dan pemanenan biomassa dalam fotobioreaktor mikroalga untuk penangkapan karbon. Jurnal Teknologi Lingkungan, 17(1), 45–52. https://doi.org/10.29122/jtl.v17i1.1464.

Prayitno, J., Rahmasari, I.I., & Rifai, A. (2020). Pengaruh interval waktu panen terhadap produksi biomassa Chlorella sp. dan Melosira sp. untuk penangkapan karbon secara biologi. Jurnal Teknologi Lingkungan, 21(1), 23–30. https://doi.org/10.29122/jtl.v21i1.3777.

Regista, R., Ambeng, A., Litaay, M., & Umar, M.R. (2017). Pengaruh pemberian vermikompos cair Lumbricus rubellus Hoffmeister pada pertumbuhan Chlorella sp. BIOMA Jurnal Biologi Makassar, 2(1), 1–8. https://doi.org/10.20956/bioma.v2i1.1346.

Ridwan, M., & Sari, K.M. (2021). Penerapan IoT dalam sistem otomatisasi kontrol suhu, kelembaban, dan tingkat keasaman hidroponik. Jurnal Teknik Pertanian Lampung, 10(4), 481–487. https://doi.org/10.23960/jtep-l.v10i4.481-487.

Safira, M., Yusuf, A., Salim, T.I., & Alam, H.S. (2023). Design and implementation of IoT-based monitoring system on nanobubble-based hydroponics farming. Jurnal Teknik Pertanian Lampung, 12(2), 470–483. https://doi.org/10.23960/jtep-l.v12i2.470-483.

Wardani, N.K., Supriyantini, E., & Santosa, G.W. (2022). Pengaruh konsentrasi pupuk Walne terhadap laju pertumbuhan dan kandungan klorofil-a Tetraselmis chuii. Journal of Marine Research, 11(1), 77–85. https://doi.org/10.14710/jmr.v11i1.31732.

Wardhani, A., Susilo, B., & Yulianingsih, R. (2015). Rancang bangun alat pengukur kepadatan mikroalga Chlorella sp. dengan menggunakan sensor fotodioda dan mikrokontroler ATMega 16. Jurnal Keteknikan Pertanian Tropis dan Biosistem, 3(1), 86–94.

Widiyanto, A., Susilo, B., & Yulianingsih, R. (2014). Studi kultur semi-massal mikroalga Chlorella sp pada area tambak dengan media air payau (di Desa Rayunggumuk, Kec. Glagah, Kab. Lamongan). Jurnal Bioproses Komoditas Tropis, 2(1), 1–7.

Wiranto, G., Rahajoeningroem, T., & Fernanda, A.F. (2020). Sistem monitoring kualitas air menggunakan sensor turbidity metode nephelometri berbasis Raspberry pi 3. Telekontran: Jurnal Ilmiah Telekomunikasi, Kendali dan Elektronika Terapan, 8(1), 23–29. https://doi.org/10.34010/TELEKONTRAN.V8I1.3070.

Zakir, A., Suyasa, I.W.B., & Astarini, I.A. (2022). Efektivitas mikroalga Chlorella vulgaris dan Spirulina plantensis dalam biosorpsi logam nikel di perairan (kasus perairan Pomalaa Kabupaten Kolaka). Journal of Environmental Science, 16(1), 83–94. https://doi.org/10.24843/EJES.2022.v16.i01.p08.

Zamani, N.P., & Muhaemin, M. (2016). Penggunaan spektrofotometer sebagai pendeteksi kepadatan sel mikroalga laut. Maspari Journal, 8(1), 39–48. https://doi.org/10.56064/maspari.v8i1.2649.

Downloads

Published

2024-04-18

Issue

Section

Articles