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ABSTRACT 
 

  
As the demand for shallot increases, wide-scale cultivation area must be managed 

efficiently. However, shallot productivity decreases every year because of plant 
diseases. Fusarium disease has an intensity up to 60% and can affect yield losses 

up to 50%. This study was conducted to develop the fusarium disease detection 

system for shallot using deep learning model and analyze the effect of preprocessing 

and augmentation adjustment. This study used YOLOv5 deep learning algorithm 
consisting of the following stages: (1) dataset acquisition, (2) dataset annotation, 

(3) dataset preprocessing and augmentation, (4) dataset training and validation, 

and (5) model testing and evaluation. A total 9,664 annotated dataset was trained 

to YOLOv5m pre-trained weights. Based on testing and evaluation results, 
precision, recall, and mean average precision (mAP) metrics of the model without 

preprocessing and augmentation were 55.5%; 54%; and 48.3% respectively. Metric 

values of the model were increased to 57.6%; 58.4%; and 54.1% respectively with 

adjustment of preprocessing and augmentation combination process. Percentage 
increase in metrics when compared to the control model for each value of precision, 

recall, and mAP were 2.1%; 4.4%; and 5.8%. This shows a significant impact on 

the addition of preprocessing and augmentation processes that match the 

characteristics of the dataset to increase the value of model performance. 
 

1. INTRODUCTION 

Shallot is one of the main functional food commodities for human. World shallot cultivation has increased 101.4% from 

2.46 million hectares in 1996 to 4.95 million hectares in 2016. Besides that, total production in 2016 has increased 

128,94% from 40.69 million tons to 93.17 million tons (Hanci, 2018). With the increases of shallot demand, wide-scale 

cultivation area must be managed efficiently. However, shallot cultivation until this day has decreased because of 

diseases and affect to more than 50% yield loss in the fields (Harvey et al., 2014). Fusarium disease, usually called 

moler disease, is one of the problems in shallot cultivation caused by Fusarium oxysporum sp. Disease intensity can be 

up to 60% in shallot cultivation and has been reported to be an important threat that can affect yield losses up to 50% 

(Supyani et al., 2021). Despite from that, monitoring growth and disease of shallots is important to prevent plant damage 

that affected by pests and diseases and minimize yield loss (Lu et al., 2017; Solahudin et al., 2015). 

Unmanned aerial vehicle (UAV) integrated with artificial intelligence is one of developed technology that can be used 

for visual monitoring plant condition in shallot cultivation (Singh et al., 2021; Solahudin & Mutawally, 2020). Machine 

vision is one of artificial intelligence algorithm that can be used for detect physical characteristic of plants based on 
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machine vision parameter of red-green-blue (RGB). Nowadays, machine vision application is widely developed with 

integration of UAV (Atefi et al., 2021) so that can faster the high-resolution image acquisition with support the global 

positioning system (GPS) feature in large area of plant cultivation (Feng et al., 2021). Deep learning is advanced part 

of machine learning algorithm using artificial neural networks which have the potential to be used for detecting plant 

disease symptoms (Ahmad et al., 2023; Ferentinos, 2018). An example of deep learning application research is the 

detection of symptoms of shallot downy mildew disease automatically based on deep neural networks (Kim et al., 2020). 

The objectives of this research are to develop a deep learning model for a shallot fusarium wilt disease detection system 

using the image of an UAV and analyze its effect on the addition of preprocessing and augmentation process. This 

research is a development from previous UAV and RGB camera application with artificial neural network researches 

for visual monitoring shallot diseases. Deep learning is used in this research to develop plant diseases monitoring system 

that detect specific to fusarium diseases. YOLOv5 algorithm is used for specific real time object detection model with 

the advantages of fast, precise, and easy to train. This disease detection system was developed to be able to solve disease 

monitoring problems quickly and accurately compared to using either technology alone or conventional methods 

(Neupane & Baysal-Gurel, 2021).  

2. METHODOLOGY 

Research was conducted from January to May 2023. Dataset acquisition of shallot plants was taken and located at one 

of farmer’s shallot fields at Wanasari Village, Wanasari District, Brebes Regency, Central Java (-6.895233° S, 

109.018127° E). Details for the acquisition area is described with polygon in Figure 1. Dataset processing and model 

development were carried out at Bioinformatics Engineering Laboratory, Department of Mechanical and Biosystem 

Engineering, IPB University.  

Tools in this research were separated into hardware and software. Hardwares included DJI Mavic Air Drones that include 

RGB camera and one set laptop Acer Aspire 5 A514-54G 11thGen Intel® Core™ i7-1165G7 NVIDIA GeForce MX350 

that include Python programming language. YOLOv5 algorithm was used for data analysis and model development. 

Softwares that used are DJI GO 4 for data acquisition from drone, then Roboflow and Google Colaboratory for data 

analysis and model development. Workflow diagram of research methodology was shown in the flowchart in Figure 2. 

2.1. Dataset Acquisition 

Dataset acquisition was done for the main objects to develop shallot disease detection deep learning model. Firstly, 

location survey must be done to identify shallot fields that have fusarium symptoms. Once identified, then the 

characteristics of the fields were recorded and can be started to collect shallot image data using UAV and direct recording 

of each point of the plant in the fields. According to land suitability research by Susilawati et al., (2019) (Figure 1), 

Wanasari Village, Wanasari District, Brebes Regency is good for shallot cultivation with land suitability at the S2 level 

(quite suitable) and dominant S3 (marginally appropriate). 

2.2. Dataset Annotation 

Object labeling or annotation was done after the dataset has been collected and identified. Object labeling is done to 

find out which objects will be recognized in an image. Labeling was needed so that the object can be recognized during 

the deep learning training process. The object labeling stage was by marking the bounding box on the dataset identified 

for the training data process which was carried out at a later stage. The result of this process is in the form of an 

annotation of the labeling results in the form of a text file that has information of bounding boxes coordinate and size.  

2.3. Dataset Preprocessing and Augmentation 

Usually, there are still disturbances or biases in images directly captured by the camera that reduce the performance of 

the training dataset, such as the effects of focus, vibration, differences in color and lighting, as well as interference from 

objects other than the main object (Ali et al., 2019). This was anticipated by carrying out preprocessing and 

augmentation processes on the annotated dataset to avoid the influence of the bias that previously mentioned. 
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Figure 1. Location of the study area 

 

 

 
Figure 2. Research workflow of shallot fusarium disease detection deep learning model development 

 

Preprocessing process is applied to the training, validation, and testing datasets. The advantage of preprocessing process 

is that it can speed up training time and improve model performance (Chen et al., 2022). Preprocessing can be done by 

resizing the image, rotating the image, cutting the image into several parts, and changing color features such as adjusting 

the image contrast. The augmentation process is applied to the training data to create a variation of examples in the 

training dataset so as to improve model generalization performance (Dang et al., 2023). The augmentation process is 

based on setting the orientation and color of the image or bounding boxes which can be adjusted according to the needs 

and characteristics of the dataset being developed (Liu et al., 2023). 

Research from Zhang et al., (2022) use geometric distortion correction and the grayscale stretch preprocessing algorithm 

for increasing image contrast in automatic stomata recognition and measurement, while research from Dang et al., 

(2023) use one of the ten geometric and photometric transformations randomly to improve model performance in object 

detection with augmentation features in research on weed detection in cotton plants based on the YOLO deep learning 

model. 
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2.4. Dataset Training and Model Evaluation 

Dataset training is the process of setup an algorithm model created to train the dataset that has been collected. This 

process uses annotation files collected from the dataset annotation results. Dataset training for fusarium shallot disease 

detection based on visual symptom was implemented in Google Colaboratory notebook with Graphic Processing Unit 

(GPU) were used Python 3 Google Compute Engine backend (GPU). 

YOLO algorithm work principle in object detection based on 24 layers of convolutional neural networks (CNN) which 

consist connected, activation, and pooling layers for the process. YOLO divides the input image into an S × S grid and 

each grid cell predicts a number of bounding boxes and their confidence value (Redmon et al., 2016). Confidence value 

represent how accurate the model detects the object. If no object exists in that cell, the confidence value is 0. Confidence 

value must be greater or equal than intersection over union (IOU) between the predicted box and the actual object. 

YOLO algorithm concept in object detection is illustrated in Figure 3. 

This research used 5th version of YOLO algorithm (YOLOv5) by Ultralytics that have better performance than older 

version. YOLOv5 has five pre-trained models whose characteristics vary in aspect of weight size and average learning 

speed. Available version of YOLOv5 pre-trained model is nano, small, medium, large, and extra large. All five of them 

can provide options for users to adjust to the hardware that will be used so that it can run properly.  

To evaluate the performance of the model, metrics performance table of was used. The mean average precision (mAP) 

was used as the metric value for performance evaluation of the fusarium shallot disease detection symptom model (Kim 

et al., 2020). It was the mean value of each class’s average precision (AP) that calculated by recall (r) and precision (p) 

metrics (Shen et al., 2018). Precision is the probability value of the actual positive object of all the objects that are 

predicted to be positive. The precision value can measure the accuracy of the prediction of positive sample results, while 

recall is the probability value of the actual positive object from all possible predicted object so that the recall value can 

represent the overall prediction accuracy (Liu et al., 2023). Equation of mAP, precision, and recall are represented as 

the following: 

mAP = 
1

𝑛
 ∑ 𝐴𝑃𝑘=𝑛

𝑘=1 k      (1) 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
                  (2) 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
       (3) 

 

 

Figure 3. YOLO algorithm concept in object detection 
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In the mAP equation, the n value shows the number of classes detected while the APk shows the average precision (AP) 

value for each class k. True positive (TP) means that the prediction result and the basic sample truth value are positive, 

while true negative (TN) means that the prediction result and the basic sample truth value are negative. False positive 

(FP) indicates that the prediction result is positive and the basic truth value is negative. False negative (FN) indicates 

that the prediction result is negative and the basic truth value is positive (Chen et al., 2022). 

3. RESULTS AND DISCUSSION  

3.1. Dataset Acquisition Result 

Detailed information from the results of the data acquisition process is described in Figure 4. The dataset is collected in 

the form of images taken by the UAV Drone DJI Mavic Air with an RGB camera with a height of 5 meters and an image 

resolution of 4056 × 3040 pixels. Acquisition time between 11:30 and 13:30 Western Indonesia Time is very good for 

avoiding shadows formed by sunlight (Kerkech et al., 2020). The images taken are shallots (Allium cepa L.) aged 10 - 

50 days, namely after the growth of shoots and before the ripening period. The spacing of shallots planted on the land 

is 15 × 15 cm. Currently shallot plants are very susceptible to disease due to high air humidity. Under high humidity 

conditions, the Fusarium oxysporum fungus can easily grow on shallots which can cause fusarium wilt. 

The collected images of 130 images are used for YOLOv5 model development data and a total of 9,664 annotations 

were produced which were divided into 3 classes (fusarium, shallot, and weeds) as training and validation data. Fusarium 

class indicates shallot plants with symptoms of fusarium disease, marked by yellowing and wilting of the tips of the 

stems to the leaves (Yang et al., 2022). The specific difference between shallots that are attacked by fusarium wilt and 

other diseases is that the point of attack is at the base of the tuber. Fusarium oxysporum can be seen at the base of the 

bulb which is whitish in color, whereas if the tuber is cut lengthwise, it will show the part that is rotting. Shallot class 

shows shallot plant objects that are still 10 - 15 days old, and weeds class shows weeds growing around shallot fields. 

Ratio of images for training and validation is 80% : 20% (104 : 26 images). There are 84 images (65%) of the 130 

images that show symptoms of fusarium attacks. Each image was taken from a total of 48 shallot plots at the research 

location so that maximum 3 images were taken from each plot. Total area of the research land is 5.2 hectares so the 

average area of shallot plots is 0.11 hectares. The distribution of annotations on the dataset for each class is shown in 

Table 1 and details of the data classification are shown in Figure 5. Figure 6 shows an example of a dataset taken by 

visualizing each class made. 

 
Figure 4. Information of data acquisition process 

 

Table 1. Annotation distribution of dataset 

Class Training set (80%) Validation set (20%) Total 

Fusarium 2,017 554 2,571 

Shallot 3,047 497 3,544 

Weeds 2,435 1,114 3,549 

Total 7,499 2,165 9,664 
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Figure 5. Result of data classification 

 

 
Figure 6. Example of dataset images. (a) Shallots. (b) Fusarium. (c) Weeds 

 

3.2. Model Development Result 

The details of the model used for the training process are described in Table 2. The dataset was trained using 500 epochs 

with a patience value of 100 so that when the training process shows convergent results for 100 running epochs, the 

training process will stop earlier before the predetermined epochs value.  

Figure 7 and 8 shows the loss curves in each category for a total of 231 epochs. Each graph shows a change in the loss 

value that decreases each running epoch for the training data and gradually becomes constant close to zero. The loss 

curve for box validation and class validation shows a drastic decrease and is closer to zero, but for object validation at 

the initial epoch it moves constant then the curve increases gradually with fluctuations. This shows the occurrence of 

overfitting in the model. The training process will stop based on hyper-parameter setup and generalization performance. 

This can minimize the occurrence of overfitting in the training process because the model is considered convergent (Kim 

et al., 2020). In this condition, the best model weight is in the 130th epochs because after 231 epochs running there is no 

performance increase in the model. 

 

Table 2. Model training parameter 

Training hyper-parameter Description 

Sub model YOLOv5m 
Total layers 291 layers 

Optimizer Stochastic Gradient Descent (learning rate = 0,01) 

Image size (training) 640 × 640 px 

Batch 16 
Epoch 500 

Patience 100 

Save period 100 
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Figure 7. Train loss graphics of model training result 

 

 
Figure 8. Validation loss graphics of model training result 

 
Table 3. Result of model training process 

Class Validation Images Instances Precision Recall mAP@0.5 mAP@[0.5:0.95] 

All 

26 

2,165 0.555 0.54 0.483 0.19 

Fusarium 554 0.467 0.298 0.289 0.0915 

Shallot 497 0.629 0.702 0.591 0.211 

Weeds 1,114 0.569 0.62 0.57 0.268 

 

 

The results of the training process are shown in Table 3. The highest metric values are in the shallot class while the 

lowest is fusarium. The highest mAP@0.5 value was owned by the shallot class, but the highest mAP@[0.5:0.95] was 

owned by the weed class. This indicates that the weed class has a better average level of precision due to prediction 

results with an intersects over union (IoU) of 50% – 95% more weed classes than other classes. The precision value of 

all classes (55.5%) shows that of all the predictions made by the model that classified three object classes as positive, 

around 55.5% of the predictions were true. The recall value of all classes (54%) shows that of all cases of object detection 

in the datasets, the model was able to identify around 54% of these cases correctly. The results show that the value of 

the model development metric is still not good enough. This is caused by the fusarium class which has the complexity 

of image features in its dataset, which can reduce the performance of the training process (Ali et al., 2019). The fusarium 

class has a focus on detection features on specific parts of the shallot plant that are attacked by the fungus Fusarium 

oxysporum, starting from the tips of the leaves that turn yellow and twisted then wither until they reach the stem of the 

plant (Yang et al., 2022), and YOLO algorithm detect this symptom in their architecture with the result of inference 
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shown in Figure 9. Besides that, the condition of complex and abstract plant objects also affects the low mAP value of 

the fusarium class. The detected shallot plant objects are around 40 - 50 days old so the shallot plants have grown large 

and with close spacing causes the plants to overlap one another (Hanci, 2018). This can be a challenge during the 

annotation process because it is necessary to prepare accurate image features for the convolution layer in the YOLO 

model so that objects can be identified more specifically than other objects (Bochkovskiy et al., 2020; Redmon et al., 

2016; Wang et al., 2022). The addition of preprocessing and augmentation processes has the potential to overcome the 

problem of object complexity in this study so that model performance can be increased. Moreover, the performance of 

the model in detecting the object being trained will be better if more datasets with vary conditions are used. This is 

because the model created will be trained better with many object variations conditions that have been classified (Li et 

al., 2022). An example of the results of model detection is shown in Figure 9. 

 

 

 
Figure 9. Example of model class inference result. (a) Shallots. (b) Fusarium. (c) Weeds 

 

Table 4. Result of model combination training comparison 

Models 
Best 

Epochs 
Time 

(hours) 
Precision Recall mAP@0.5 mAP@[0.5:0.95] 

YOLOv5 130 0.46 0.555 0.54 0.483 0.19 

YOLOv5 with preprocessing 64 0.35 0.544 0.547 0.515 0.18 

YOLOv5 with augmentation 32 0.68 0.569 0.567 0.529 0.19 

YOLOv5 with preprocessing and 

augmentation 
48 0.86 0.576 0.584 0.541 0.2 

 

3.3. Adjustment of Preprocessing and Augmentation Process 

This section compares the control model that has been developed in the previous section, with its effect on the addition 

of preprocessing and augmentation. The process combinations in the model are shown in Table 4 and compared by total 

epochs and model performance metric values. Preprocessing process on the model dataset uses the histogram 
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equalization adjustment contrast feature. For augmentation, the features rotate (90° and 180°), crop (maximum 50%), 

saturation variety (between -25% and 25%), and noise adjustment (maximum 5%) are used. All of these features were 

chosen because they are suitable for research datasets that are aerial imagery by drones and require color parameters to 

detect objects (Bao et al., 2023). The process illustration for each additional feature is depicted in Figures 10 and 11. 

  

 
 

Figure 10. Illustration of preprocessing process 

 

 

 
Figure 11. Illustration of augmentation process 

Based on the results of the combination training model in Table 4, there is an increase in the performance value of the 

model if the preprocessing and augmentation features are added. The combination model with the best improvement is 

Original Image Histogram Equalization 

Rotate 90° Rotate 180° 

Saturation Noise 

Crop 
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the model with additional preprocessing and augmentation processes. The percentage increase in performance metrics 

when compared to the control model for each precision, recall, mAP@0.5, and mAP@[0.5:0.95] value is 2.1%; 4.4%; 

5.8%; and 1.0%. The results of this increase show a significant impact on the addition of preprocessing and augmentation 

processes that match the characteristics of the dataset to increase the value of model performance (Luo et al., 2023). 

However, in the length of time of the training process, the model with the addition of preprocessing and augmentation 

has the longest time compared to the other combinations, and that is even 2 times longer than the control model. This is 

because the model needs to process more datasets due to the addition of dataset variations from the augmentation feature 

(Chen et al., 2022). If combined with the preprocessing process, the dataset variations will increase. For this reason, the 

addition of these two features has its own advantages and disadvantages relative to the characteristics of the dataset 

being developed (Sanaeifar et al., 2023). Need to choose the right combination of preprocessing and augmentation 

processes in order to improve model performance and not add too much time to the training process.   

4. CONCLUSIONS  

Development of deep learning model to monitor the growth of shallot can be implemented to prevent plant damage due 

to diseases and minimize yield losses. This research provides shallot fusarium diseases dataset taken by the UAV Drone 

DJI Mavic Air with an RGB camera and collected 145 images. A total of 130 images were selected and a total of 9,664 

annotations were produced which were divided into 3 classes (fusarium, shallot, and weeds) as training and validation 

data. Results of precision, recall, mAP@0.5, and mAP@[0.5:0.95] value of the model were 55.5%; 54%; 48.3%; and 

19.0% respectively. With the adjustment of preprocessing and augmentation process, metric values of the model were 

increased to 57.6%; 58.4%; 54.1%; and 20.0% respectively. Percentage increase in metrics when compared to the control 

model for each value of precision, recall, mAP@0.5, and mAP@[0.5:0.95] is 2.1%; 4.4%; 5.8%; and 1.0%. The results 

of this increase show a significant impact on the addition of preprocessing and augmentation processes that match the 

characteristics of the dataset to increase the value of model performance.  
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