Improving the Taste of Robusta Coffee by Fermentation with Yeast Inoculum and Its Effect on Caffeine Content

Authors

  • Hani Fildzah Nadya IPB University
  • Usman Ahmad IPB University
  • Samsudin Samsudin Badan Riset dan Inovasi Nasional (BRIN), Jakarta

DOI:

https://doi.org/10.23960/jtep-l.v13i2.298-308

Abstract

Harvesting coffee process by farmers generally executed entirety, resulting rainbow harvest. Coffee fermentation with yeast starter cultures Saccharomyces cerevisiae Y612, Candida parapsilosis Y207 and Torulospora delbrueckii Y594 was executed separately to determine the role of starter cultures on caffeine and robusta coffee taste at different maturity levels. The study was conducted at the Indonesian Industrial and Beverage Crops Research Institute in Sukabumi,, from June to November 2022. The experiment used a factorial complete randomized design. The first factor was the maturity level of the coffee and starter culture as the second factor. Fermentation was implemented for 48 hours inoculated with 108 cells/mL starter culture. The results showed that the temperature fluctuated, the pH value always decreased to 4.50 and T. delbrueckii was the starter culture with the highest activity during fermentation. Inoculum-fermented robusta coffee caffeine content was higher than non-inoculum. The lowest caffeine content was found in spontaneously fermented red fruit of 1.39%, while the highest caffeine content was produced by red fruit samples inoculated with C. parapsilosis of 2.7%. Robusta coffee with S. cerevisiae inoculation brought the best taste of robusta coffee with 82.10%, there was no significant difference between the red harvest coffee fruit and the fermented rainbow color with a starter culture.

 

Keywords: Caffeine, Harvest, Inoculation, Maturity level, Starter cultures

Author Biographies

  • Hani Fildzah Nadya, IPB University
    Department of Postharvest Technology, Graduate School
  • Usman Ahmad, IPB University
    Department of Mechanical and Biosystem Engineering, Fakulty of Agricultural Technology
  • Samsudin Samsudin, Badan Riset dan Inovasi Nasional (BRIN), Jakarta
    Horticultural and Plantation Research Center, Research Organisation of Agriculture and Food

References

Arimurti, S., Oktavianawati, I., & Suharjono, S. (2021). Isolation and screening caffeine-degrading bacteria. IOP Conference Series: Earth and Environmental Science, 743(1). https://doi.org/10.1088/1755-1315/743/1/012095.

Bastian, F., Hutabarat, O.S., Dirpan, A., Nainu, F., Harapan, H., Emran, T. Bin, & Simal-Gandara, J. (2021). From plantation to cup: changes in bioactive compounds during coffee processing. Foods, 10(11). https://doi.org/10.3390/foods10112827.

Bicho, N.C., Leitão, A.E., Ramalho, J.C., De Alvarenga, N.B., & Lidon, F.C. (2013). Identification of chemical clusters discriminators of Arabica and Robusta green coffee. International Journal of Food Properties, 16(4), 895–904. https://doi.org/10.1080/10942912.2011.573114.

Bressani, A.P.P., Martinez, S.J., Evangelista, S.R., Dias, D.R., & Schwan, R.F. (2018). Characteristics of fermented coffee inoculated with yeast starter cultures using different inoculation methods. LWT, 92, 212–219.

https://doi.org/10.1016/j.lwt.2018.02.029.

Bressani, A.P.P., Martinez, S.J., Sarmento, A.B.I., Borém, F.M., & Schwan, R.F. (2020). Organic acids produced during fermentation and sensory perception in specialty coffee using yeast starter culture. Food Research International, 128. https://doi.org/10.1016/j.foodres.2019.108773.

Daisa, J., Rossi, E., & Dini, I.R. (2017). Pemanfaatan ekstrak kasar enzim papain pada proses dekafeinasi kopi Robusta. Jurnal Online Mahasiswa Fakultas Pertanian Universitas Riau, 4(1), 1–14.

de Melo Pereira, G.V., de Carvalho Neto, D.P., Medeiros, A.B.P., Soccol, V.T., Neto, E., Woiciechowski, A.L., & Soccol, C.R. (2016). Potential of lactic acid bacteria to improve the fermentation and quality of coffee during on-farm processing. International Journal of Food Science and Technology, 51(7), 1689–1695. https://doi.org/10.1111/ijfs.13142.

de Melo Pereira, G.V., de Carvalho Neto, D.P., Magalhães Júnior, A.I., Vásquez, Z.S., Medeiros, A.B.P., Vandenberghe, L.P.S., & Soccol, C.R. (2019). Exploring the impacts of postharvest processing on the aroma formation of coffee beans – A review. Food Chemistry, 272, 441–452. https://doi.org/10.1016/j.foodchem.2018.08.061.

Elhalis, H., Cox, J., Frank, D., & Zhao, J. (2020). The crucial role of yeasts in the wet fermentation of coffee beans and quality. International Journal of Food Microbiology, 333. https://doi.org/10.1016/j.ijfoodmicro.2020.108796.

Evangelista, S.R., Miguel, M.G.da C.P., Silva, C.F., Pinheiro, A.C.M., & Schwan, R.F. (2015). Microbiological diversity associated with the spontaneous wet method of coffee fermentation. International Journal of Food Microbiology, 210, 102–112. https://doi.org/10.1016/j.ijfoodmicro.2015.06.008.

Fibrianto, K., Ardianti, A.D., Pradipta, K., & Sunarharum, W.B. (2018). The influence of brewing water characteristic on sensory perception of pour-over local coffee. IOP Conference Series: Earth and Environmental Science, 102(1). https://doi.org/10.1088/1755-1315/102/1/012095.

Jeszka-Skowron, M., Sentkowska, A., PyrzyÅ„ska, K., & De Peña, M.P. (2016). Chlorogenic acids, caffeine content and antioxidant properties of green coffee extracts: Influence of green coffee bean preparation. European Food Research and Technology, 242(8), 1403–1409. https://doi.org/10.1007/s00217-016-2643-y.

Kartasasmita, R.E., & Addyantina, S. (2012). Dekafeinasi biji kopi Robusta (Coffea canephora L.) menggunakan pelarut polar (etanol dan metanol). Acta Pharmaceutica Indonesia, XXXVII(3), 83–89.

Larassati, D.P., Kustyawati, M.E., Sartika, D., & AS, S. (2021). Efek fermentasi basah menggunakan kultur Saccharomyces cerevisiae terhadap sifat kimia dan sensori kopi Robusta (Coffea canephora). Jurnal Teknik Pertanian Lampung, 10(4), 449-458. https://doi.org/10.23960/jtep-l.v10i4.449-458.

Latunra, A.I., Johannes, E., Mulihardianti, B., & Sumule, O. (2021). Analisis kandungan kafein kopi (Coffea arabica) pada tingkat kematangan berbeda menggunakan spektrofotometer UV-VIS. Jurnal Ilmu Alam dan Lingkungan, 12(1), 45–50. https://journal.unhas.ac.id/index.php/jai2.

Lee, L.W., Cheong, M.W., Curran, P., Yu, B., & Liu, S.Q. (2015). Coffee fermentation and flavor - An intricate and delicate relationship. Food Chemistry, 185, 182–191. https://doi.org/10.1016/j.foodchem.2015.03.124

Lee, L.W., Tay, G. Y., Cheong, M.W., Curran, P., Yu, B., & Liu, S.Q. (2017). Modulation of the volatile and non-volatile profiles of coffee fermented with Yarrowia lipolytica: II. Roasted coffee. LWT, 80, 32–42. https://doi.org/10.1016/j.lwt.2017.01.070.

Martauli, E.D. (2018). Analisis produksi kopi di Indonesia. Journal of Agribusiness Sciences, 1(2), 112-120. https://doi.org/10.30596/jasc.v1i2.1962

Olechno, E., PuÅ›cion-Jakubik, A., Zujko, M.E., & Socha, K. (2021). Influence of various factors on caffeine content in coffee brews. Foods, 10(6), 1–29. https://doi.org/10.3390/foods10061208.

Puslitkoka (Pusat Penelitian Kopi & Kakao Indonesia). (2021). Petik merah untuk citarasa prima seduhan kopi. https://iccri.net/petik-merah-untuk-citarasa-prima-seduhan-kopi/ (Accessed on 10 March 2023).

Silva, C.F., Vilela, D.M., de Souza Cordeiro, C., Duarte, W.F., Dias, D. R., & Schwan, R.F. (2013). Evaluation of a potential starter culture for enhance quality of coffee fermentation. World Journal of Microbiology and Biotechnology, 29(2), 235–247. https://doi.org/10.1007/s11274-012-1175-2.

Sinaga, H.L.R., Bastian, F., & Syarifuddin, A. (2021). Effect of decaffeination and re-fermentation on level of caffeine, chlorogenic

acid and total acid in green bean robusta coffee. IOP Conference Series: Earth and Environmental Science, 807(2). https://doi.org/10.1088/1755-1315/807/2/022069.

Summers, R.M., Mohanty, S.K., Gopishetty, S., & Subramanian, M. (2015). Genetic characterization of caffeine degradation by bacteria and its potential applications. Microbial Biotechnology, 8(3), 369–378. https://doi.org/10.1111/1751-7915.12262.

Supriyanti, E., Suhandy, D., Yulia, M., & Waluyo, S. (2018). Penggunaan teknologi UV-Vis spectroscopy untuk membedakan jenis kopi bubuk Arabika Gayo wine dan kopi bubuk Arabika Gayo biasa. Jurnal Teknik Pertanian Lampung, 7(3), 123-132. https://doi.org/10.23960/jtep-l.v7i3.123-132.

Thalia, T., Ersan, E., Delvitasari, F., & Maryanti, M. (2020). Pengaruh fermentasi S. cerevisiae terhadap mutu kopi Robusta. Agritrop: Jurnal Ilmu-Ilmu Pertanian, 18(1), 60–77. https://doi.org/10.32528/agritrop.v18i1.3489

Wamuyu, K.A., Richard, K., Beatrice, M., & Cecilia, K. (2017). Effect of different fermentation methods on physicochemical composition and sensory quality of coffee (Coffea arabica). IOSR Journal of Environmental Science, Toxicology and Food Technology, 11(06), 31–36. https://doi.org/10.9790/2402-1106023136.

Wang, X., & Lim, L.T. (2015). Physicochemical characteristics of roasted coffee. In Coffee in Health and Disease Prevention, 247–254. Elsevier Inc. https://doi.org/10.1016/B978-0-12-409517-5.00027-9

Yusianto, Y., & Nugroho, D. (2014). Mutu fisik dan citarasa kopi Arabika yang disimpan buahnya sebelum di-pulping. Pelita Perkebunan, 30(2), 137–158.

Downloads

Published

2024-04-04

Issue

Section

Articles