Prediction of Caffeine and Protein of Arabica Coffee Beans Using Near Infrared Spectroscopy (NIRS)

Authors

  • Fitri Yuwita Universitas Bengkulu
  • Ifmalinda Ifmalinda Universitas Andalas
  • Muhammad Makky Universitas Andalas

DOI:

https://doi.org/10.23960/jtep-l.v12i4.852-862

Abstract

Testing the chemical components of coffee beans has so far been carried out conventionally with laboratory analysis which requires a long time and is expensive. Technological advances allow testing of chemical components to be carried out quickly and accurately using the NIRS (Near Infra Red Spectroscopy) method. This research aims to develop a prediction model for caffeine and protein in Solok Radjo coffee beans using the NIRS method. Solok Radjo coffee is a type of Arabica with specialty grade because of its very strong character, aroma and taste. A total of 30 samples with a weight of 6 g per sample were used in this study. This research uses NIRS Type FT-IR IPTEK T-1516 with a wavelength of 1000 - 2500 nm. The partial least squares (PLS) method was used to process the data with several SNV, MN, and MSC pretreatments to improve the model. The research results show that caffeine is found at wavelengths of 1456 - 1475 nm, 1937 - 1974 nm. Proteins 1455 - 1475 nm, and 1935 - 1974 nm. MSC pretreatment is able to improve PLS performance results. Caffeine calibration values are R2 = 0.996 and SEC = 0.002%, validation values R2 = 0.989, SEP = 0.002%, and RPD 11.869 while protein calibration R2 = 0.999 and SEC = 0.004%, Validation values R2 = 0.999, SEP = 0.010%, and RPD 19,943. NIRS can be used to predict the chemical components of Solok Radjo coffee non-destructively using the PLS method.

 

Key work: Caffeine, NIRS, PLS, predict, protein

 

References

Abbas, O., Pissard, A., & Baeten, V. (2020). Near-infrared, mid-infrared, and Raman spectroscopy. In Chemical Analysis of Food. (Second Ed, pp. 77–134). Elsevier Inc. https://doi.org/10.1016/b978-0-12-813266-1.00003-6

Aditama, H.F., Budiastra, I.W., & Widodo, S. (2019). Pengembangan model jaringan syaraf tiruan untuk penentuan kandungan kimia biji kopi arabika Gayo dengan NIRS. Warta Industri Hasil Pertanian, 36(1), 22-29. https://doi.org/10.32765/wartaihp.v36i1.4767

Arwangga, Fahmi, A., Asih, I.A.R.A., & Sudiarta, I.W. (2016). Analisis kandungan kafein pada kopi di Desa Sesaot Narmada menggunakan spektrofotometri UV-Vis. Jurnal Kimia, 10(1), 110–114. https://doi.org/10.24843/jchem.2016.v10.i01.p15

Blanco, M., & Villarroya, I. (2002). NIR spectroscopy: A rapid-response analytical tool. TrAC - Trends in Analytical Chemistry, 21(4), 240–250. https://doi.org/10.1016/S0165-9936(02)00404-1

BPS. (2020). Statistik Kopi Indonesia 2020. Badan Pusat Statistik. Jakarta

BSN. (2004). SNI 01-3542-2004 Kopi Bubuk. Badan Standarisasi Nasional. Jakarta

Buchi, L. (2013). Nircal 5.5 manual. Switzerland (CHE). Buchi Labortechnik AG, CH Flawil.

Cen, H., & He, Y. (2007). Theory and application of near infrared reflectance spectroscopy in determination of food quality. Trends in Food Science and Technology, 18(2), 72–83. https://doi.org/10.1016/j.tifs.2006.09.003

Clarke, R. J., & Macrae, R. (1987). Coffe Technology. London. Elsevier Applied Science.

Hairatun, H., Munawar, A. A., & Zulfahrizal, Z. (2017). Akuisisi spektrum near infrared reflectance pada bubuk kopi arabika (Kenary Coffee) dan bubuk kopi robusta (Kopi Ulee Kareng). Jurnal Ilmiah Mahasiswa Pertanian, 2(1), 331–337. https://doi.org/10.17969/jimfp.v2i1.2174

Hayati, R., Zulfahrizal, Z., & Munawar, A.A. (2021). Robust prediction performance of inner quality attributes in intact cocoa beans using near infrared spectroscopy and multivariate analysis. Heliyon, 7(2), 1–7. https://doi.org/10.1016/j.heliyon.2021.e06286

Ifmalinda, I., Setiasih, I. S., Muhaemin, M., & Nurjanah, S. (2019). Chemical characteristics comparison of palm civet coffee (kopi luwak) and arabica coffee beans. Journal of Applied Agricultural Science and Technology, 3(2), 280–288. https://doi.org/10.32530/jaast.v3i2.110

Madi, S.C.Y., Budiastra, I.W., Aris Purwanto, Y., & Widyotomo, S. (2018). Analysis of the effect of variation of bean layers on prediction accuracy of minor compound in green arabica coffee beans of Bondowoso by NIR spectroscopy. Jurnal Ilmu Pertanian Indonesia, 23(2), 81–87. https://doi.org/10.18343/jipi.23.2.81

Makky, M., Santosa, Putri, R.E., & Nakano, K. (2019). Determination of moisture content in rice using non-destructive short-wave near infrared spectroscopy. AIP Conference Proceedings, 2155, 020014. https://doi.org/10.1063/1.5125518

Mardiantono, M., Budiastra, I.W., & Sutrisno. (2022). Prediksi kandungan kimia kopra dengan FT-NIR spectroscopy menggunakan PLS. Jurnal Keteknikan Pertanian, 10(2), 87–97. https://doi.org/10.19028/jtep.010.2.87-97

Mouazen, A.M., Saeys, W., Xing, J., De Baerdemaeker, J., & Ramon, H. (2005). Near infrared spectroscopy for agricultural materials: An instrument comparison. Journal of Near Infrared Spectroscopy, 13(2), 87–97. https://doi.org/10.1255/jnirs.461

Munawar, A.A. (2014). Multivariate Analysis and Artificial Neural Network Approaches of Near Infrared Spectroscopic Data for Non-Destructive Quality Attributes Prediction of Mango (Mangifera indica L.). [Doctoral Dissertation]. Division of Agricultural Engineering University Göttingen, Germany.

Munawar, A.A., Zulfahrizal, Z., Hayati, R., & Syahrul. (2022). Agricultural products quality determination by means of near infrared spectroscopy. IOP Conference Series: Earth and Environmental Science, 951, 012112. https://doi.org/10.1088/1755-1315/951/1/012112

Nicolaï, B.M., Beullens, K., Bobelyn, E., Peirs, A., Saeys, W., Theron, K.I., & Lammertyn, J. (2007). Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biology and Technology, 46(2), 99–118. https://doi.org/10.1016/j.postharvbio.2007.06.024

Purwasih, R., Alamsyah, O.J., Mukminah, N., & Fathurohman, F. (2022). Characteristics and identification of the metabolite profile of arabica coffee oil by using the gas chromatography-mass spectrometry (GC-MS). Jurnal Teknik Pertanian Lampung, 11(3), 365-377. https://doi.org/10.23960/jtep-l.v11i3.365-377

Rahayuningsih, D., & Rahayu, T. (2014). Pengaruh Suhu dan Waktu Penyeduhan Teh Celup Terhadap Kadar Kafein. [Doctoral Dissertation]. Universitas Muhammadiyah Surakarta.

Ribeiro, J.S., Salva, T.de J.G., & Silvarolla, M.B. (2021). Prediction of a wide range of compounds concentration in raw coffee beans using NIRS, PLS and variable selection. Food Control, 125, 107967. https://doi.org/10.1016/j.foodcont.2021.107967

Rosita, R., Budiastra, I., & Sutrisno, S. (2016). Prediction of caffein content of arabica coffee bean by near infrared spectroscopy. Jurnal Keteknikan Pertanian, 04(2), 1–8. https://doi.org/10.19028/jtep.04.2.179-186

Sasmita, Y., Sukainah, A., & Wijaya, M. (2023). Pengaruh penambahan madu sebagai sumber karbon terhadap fermentasi spontan arabika di Kabupaten Banteng. Patani, 6(1), 11–17.

Sudarmadji, S., Haryono, B., Suhardi, S. (2010). Analisa untuk Bahan Makanan dan Pertanian. Liberty, Yogyakarta: 172 pp.

Wang, X., & Lim, L.T. (2015). Physicochemical characteristics of roasted coffee. In Coffee in Health and Disease Prevention. Canada. Academik Press. https://doi.org/10.1016/B978-0-12-409517-5.00027-9

Williams, P., & Norris, K. (1987). Near-Infrared Technology in The Agricultural and Food Industries. USA: American Association of Cereal Chemists, Inc. pp 330

Yuwita, F., Ifmalinda, & Makky, M. (2019). Non-destructive evaluation of fat content of coffee beans Solok Radjo using near infrared spectroscopy. IOP Conference Series: Earth and Environmental Science, 327, 012005. https://doi.org/10.1088/1755-1315/327/1/012005

Zhu, M., Long, Y., Chen, Y., Huang, Y., Tang, L., Gan, B., Yu, Q., & Xie, J. (2021). Fast determination of lipid and protein content in green coffee beans from different origins using NIR spectroscopy and chemometrics. Journal of Food Composition and Analysis, 102, 104055. https://doi.org/10.1016/j.jfca.2021.104055

Downloads

Published

2023-12-01