Mycorrhiza Diversity in Some Intercropping Systems of Potato (Solanum tuberosum L) and Faba Bean (Vicia faba L)
DOI:
https://doi.org/10.23960/jtep-l.v12i2.495-508Abstract
Arbuscular mycorrhizal fungi (AMF) is the most widely distributed mycorrhizal fungi in the soil and can make a symbiosis with the roots of host plants to form arbuscular mycorrhizal symbionts. Intercropping is a practice of polyculture cropping where two or more plant species are simultaneously cultivated in the same field. The objective of this study was to define the effect of intercropping on the density and diversity of mycorrhizal spores. In this study, potatoes and faba beans, both of which have the ability to symbiosis with mycorrhizae, were intercropped. A randomized group design with 5 planting system treatments was employed in this study with 5 replications. The results concluded that density of mycorrhizal spores in the intercropping planting pattern was not statistically different from the density of mycorrhiza in the monoculture cultivation pattern. The types of mycorrhiza found included the genus of Glomus, Funneliformis, Scutellospora, Cetraspora, Septoglomus, and Entrophospora
Keywords: pH; Root exudate; Spore density, Spore identification; Spore diversity.
References
Alimi, A., Adeleke, R., & Moteetee, A. (2021). Soil environmental factors shape the rhizosphere arbuscular mycorrhizal fungal communities in South African indigenous legumes (Fabaceae). Biodiversitas Journal of Biological Diversity, 22(5), 2466–2476. https://doi.org/10.13057/biodiv/d220503
Badri, D.V., & Vivanco, J.M. (2009). Regulation and function of root exudates. Plant, Cell and Environment, 32(6), 666–681. https://doi.org/10.1111/j.1365-3040.2009.01926.x
Bainard, L.D., Klironomos, J.N., & Gordon, A.M. (2011). Arbuscular mycorrhizal fungi in tree-based intercropping systems: A review of their abundance and diversity. Pedobiologia, 54(2), 57–61. https://doi.org/10.1016/j.pedobi.2010.11.001
Banjarnahor, D.R.V. (2017). Faba bean: A promising crop for realizing a healthier potato cropping system in the Dieng highlands. Biota : Jurnal Ilmiah Ilmu-Ilmu Hayati, April, 5–9. https://doi.org/10.24002/biota.v1i2.997
Bargaz, A., Nasielski, J., Isaac, M.E., Jensen, E.S., & Carlsson, G. (2021). Faba bean variety mixture can modulate faba bean–wheat intercrop performance under water limitation. Frontiers in Agronomy, 3(June). https://doi.org/10.3389/fagro.2021.655973
Błaszkowski, J., Chwat, G., Góralska, A., Ryszka, P., & Orfanoudakis, M. (2014). Septoglomus jasnowskae and Septoglomus turnauae, two new species of arbuscular mycorrhizal fungi (Glomeromycota). Mycological Progress, 13(4), 985. https://doi.org/10.1007/s11557-014-0985-z
Bouffaud, M.L., Creamer, R.E., Stone, D., Plassart, P., van Tuinen, D., Lemanceau, P., Wipf, D., & Redecker, D. (2016). Indicator species and co-occurrence in communities of arbuscular mycorrhizal fungi at the European scale. Soil Biology and Biochemistry, 103, 464–470. https://doi.org/10.1016/j.soilbio.2016.09.022
Brundrett, M.C., Bougher, N., Dell, B., & Grove, T. (1996). Working with Mycorrhizas in Forestry and Agriculture. Australian Centre for International Agricultural Research. https://doi.org/10.13140/2.1.4880.5444
Chagnon, P.-L., Bradley, R.L., Maherali, H., & Klironomos, J.N. (2013). A trait-based framework to understand life history of mycorrhizal fungi. Trends in Plant Science, 18(9), 484–491. https://doi.org/10.1016/j.tplants.2013.05.001
Chifflot, V., Rivest, D., Olivier, A., Cogliastro, A., & Khasa, D. (2009). Molecular analysis of arbuscular mycorrhizal community structure and spores distribution in tree-based intercropping and forest systems. Agriculture, Ecosystems and Environment, 131(1–2), 32–39. https://doi.org/10.1016/j.agee.2008.11.010
de Souza, T.A.F., Rodriguez-EcheverrÃa, S., de Andrade, L.A., & Freitas, H. (2016). Arbuscular mycorrhizal fungi in Mimosa tenuiflora (Willd.) Poir from Brazilian semi-arid. Brazilian Journal of Microbiology, 47(2), 359–366. https://doi.org/10.1016/j.bjm.2016.01.023
Ehiobu, J., Idamokoro, E., & Afolayan, A. (2022). Biofungicides for improvement of potato (Solanum tuberosum L) production. Scientifica, 2022, 1–9. https://doi.org/10.1155/2022/1405900
Foo, E., Ross, J.J., Jones, W.T., & Reid, J.B. (2013). Plant hormones in arbuscular mycorrhizal symbioses: An emerging role for gibberellins. Annals of Botany, 111(5), 769–779. https://doi.org/10.1093/aob/mct041
Geisseler, D., & Scow, K.M. (2014). Long-term effects of mineral fertilizers on soil microorganisms – A review. Soil Biology and Biochemistry, 75, 54–63. https://doi.org/10.1016/j.soilbio.2014.03.023
Guo, Y., George, E., & Marschner, H. (1996). Contribution of an arbuscular mycorrhizal fungus to the uptake of cadmium and nickel in bean and maize plants. Plant and Soil, 184(2), 195–205. https://doi.org/10.1007/BF00010449
Guzman, A., Montes, M., Hutchins, L., DeLaCerda, G., Yang, P., Kakouridis, A., Dahlquist-Willard, R. M., Firestone, M. K., Bowles, T., & Kremen, C. (2021). Crop diversity enriches arbuscular mycorrhizal fungal communities in an intensive agricultural landscape. New Phytologist, 231(1), 447–459. https://doi.org/10.1111/nph.17306
INVAM. (2022). Entrophospora infrequens. https://invam.ku.edu/infrequens
INVAM. (2023a). Cetraspora pellucida. https://invam.ku.edu/pellucida
INVAM. (2023b). Funneliformis C. Walker & Schüßler. https://invam.ku.edu/glomeraceae-funneliformis
INVAM. (2023c). Funneliformis verruculosus. https://invam.ku.edu/verruculosus
INVAM. (2023d). Glomus pansihalos. https://invam.ku.edu/pansihalos
INVAM. (2023e). Scutellospora bionata. https://invam.ku.edu/biornata
INVAM. (2023f). Septoglomus constrictum. https://invam.ku.edu/constrictum
Jerbi, M., Labidi, S., Lounès-Hadj Sahraoui, A., Chaar, H., & Jeddi, F. Ben. (2020). Higher temperatures and lower annual rainfall do not restrict, directly or indirectly, the mycorrhizal colonization of barley (Hordeum vulgare L.) under rainfed conditions. PLoS ONE, 15(11 November), 1–19. https://doi.org/10.1371/journal.pone.0241794
Johnson, D., Vandenkoornhuyse, P.J., Leake, J.R., Gilbert, L., Booth, R.E., Grime, J.P., Young, J.P.W., & Read, D.J. (2004). Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytologist, 161(2), 503–515. https://doi.org/10.1046/j.1469-8137.2003.00938.x
Khaekhum, S. (2017). Species richness and composition of arbuscular mycorrhizal fungi occurring on eucalypt trees (Eucalyptus camaldulensis Dehnh.) in rainy and dry season. Current Research in Environmental & Applied Mycology, 7(4), 282–292. https://doi.org/10.5943/cream/7/4/5
Li, L., Li, S.M., Sun, J.H., Zhou, L.L., Bao, X.G., Zhang, H.G., & Zhang, F.S. (2007). Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proceedings of the National Academy of Sciences of the United States of America, 104(27), 11192–11196. https://doi.org/10.1073/pnas.0704591104
Li, Z.-R., Wang, J.-X., An, L.-Z., Tan, J.-B., Zhan, F.-D., Wu, J., & Zu, Y.-Q. (2019). Effect of root exudates of intercropping Vicia faba and Arabis alpina on accumulation and sub-cellular distribution of lead and cadmium. International Journal of Phytoremediation, 21(1), 4–13. https://doi.org/10.1080/15226514.2018.1523867
Liu, A., Ku, Y.-S., Contador, C.A., & Lam, H.-M. (2020). The impacts of domestication and agricultural practices on legume nutrient acquisition through symbiosis with rhizobia and arbuscular mycorrhizal fungi. Frontiers in Genetics, 11(September), 1–11. https://doi.org/10.3389/fgene.2020.583954
Liu, X., Feng, Z., Zhao, Z., Zhu, H., & Yao, Q. (2020). Acidic soil inhibits the functionality of arbuscular mycorrhizal fungi by reducing arbuscule formation in tomato roots. Soil Science and Plant Nutrition, 66(2), 275–284. https://doi.org/10.1080/00380768.2020.1721320
Liu, Y., Yin, X., Xiao, J., Tang, L., & Zheng, Y. (2019). Interactive influences of intercropping by nitrogen on flavonoid exudation and nodulation in faba bean. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-019-41146-9
Luo, X., Su, X., Cui, J., Lou, Y., Li, R., Luo, X., Zeng, Y., Xu, Y., & Dong, J. (2016). Biodiversity of arbuscular mycorrhizal fungi in the drawdown zone of the Three Gorges Reservoir under different fertilization histories. Ecological Research, 31(3), 407–416. https://doi.org/10.1007/s11284-016-1356-9
Maj, D., Wielbo, J., Marek-Kozaczuk, M., & Skorupska, A. (2010). Response to flavonoids as a factor influencing competitiveness and symbiotic activity of Rhizobium leguminosarum. Microbiological Research, 165(1), 50–60. https://doi.org/10.1016/j.micres.2008.06.002
Mandal, S.M., Chakraborty, D., & Dey, S. (2010). Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signaling and Behavior, 5(4), 359–368. https://doi.org/10.4161/psb.5.4.10871
Marschner, P. (2011). Rhizosphere Biology. In Marschner’s Mineral Nutrition of Higher Plants: Third Edition. Elsevier Ltd. https://doi.org/10.1016/B978-0-12-384905-2.00015-7
Muleta, D., Assefa, F., Nemomissa, S., & Granhall, U. (2008). Distribution of arbuscular mycorrhizal fungi spores in soils of smallholder agroforestry and monocultural coffee systems in southwestern Ethiopia. Biology and Fertility of Soils, 44(4), 653–659. https://doi.org/10.1007/s00374-007-0261-3
Oehl, F., Laczko, E., Oberholzer, H.R., Jansa, J., & Egli, S. (2017). Diversity and biogeography of arbuscular mycorrhizal fungi in agricultural soils. Biology and Fertility of Soils, 53(7), 777–797. https://doi.org/10.1007/s00374-017-1217-x
Oliveira, A.N. de, & Oliveira, L.A. de. (2005). Seasonal dynamics of arbuscular mycorrhizal fungi in plants of Theobroma grandiflorum Schum and Paullinia cupana Mart. of aN agroforestry system in Central Amazonia, Amazonas State, Brazil. Brazilian Journal of Microbiology, 36(3), 262–270. https://doi.org/10.1590/S1517-83822005000300011
Pacioni, G. (1992). 16 wet-sieving and decanting techniques for the extraction of spores of vesicular-arbuscular fungi. Methods in Microbiology, 24(C), 317–322. https://doi.org/10.1016/S0580-9517(08)70099-0
Palenzuela, J., Azcón-Aguilar, C., Barea, J.-M., da Silva, G.A., & Oehl, F. (2013). Septoglomus altomontanum, a new arbuscular mycorrhizal fungus from mountainous and alpine areas in AndalucÃa (southern Spain). IMA Fungus, 4(2), 243–249. https://doi.org/10.5598/imafungus.2013.04.02.09
Pande, M., & Tarafdar, J. C. (2004). Arbuscular mycorrhizal fungal diversity in neem-based agroforestry systems in Rajasthan. Applied Soil Ecology, 26(3), 233–241. https://doi.org/10.1016/j.apsoil.2003.12.009
Parihar, M., Rakshit, A., Singh, H.B., & Rana, K. (2019). Diversity of arbuscular mycorrhizal fungi in alkaline soils of hot sub humid eco-region of middle gangetic plains of India. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 69(5), 386–397. https://doi.org/10.1080/09064710.2019.1582692
Pivato, B., Mazurier, S., Lemanceau, P., Siblot, S., Berta, G., Mougel, C., & Van Tuinen, D. (2007). Medicago species affect the community composition of arbuscular mycorrhizal fungi associated with roots. New Phytologist, 176(1), 197–210. https://doi.org/10.1111/j.1469-8137.2007.02151.x
Prasad, R., & Mertia, R.S. (2005). Dehydrogenase activity and VAM fungi in tree-rhizosphere of agroforestry systems in Indian arid zone. Agroforestry Systems, 63(3), 219–223. https://doi.org/10.1007/s10457-004-0536-8
Priya, L.S., Kumutha, K., Arthee, R., & Pandiyarajan, P. (2014). Identification of Arbuscular mycorrhizal multiplicity in the saline-sodic soils. International Journal of Agricultural and Biological Engineering, 7(2), 56–67. https://doi.org/10.3965/j.ijabe.20140702.007
Püschel, D., JanouÅ¡ková, M., VoÅ™ÃÅ¡ková, A., Gryndlerová, H., Vosátka, M., & Jansa, J. (2017). Arbuscular mycorrhiza stimulates biological nitrogen fixation in two Medicago spp. through improved phosphorus acquisition. Frontiers in Plant Science, 8(March), 1–12. https://doi.org/10.3389/fpls.2017.00390
Rai, I. N., Suada, I.K., Proborini, M.W., Wiraatmaja, I.W., Semenov, M., & Krasnov, G. (2019). The Indigenous endomycorrhizal fungi at salak (Salacca zalacca) plantations in Bali, Indonesia and their colonization of the roots. Biodiversitas Journal of Biological Diversity, 20(8), 2410–2416. https://doi.org/10.13057/biodiv/d200840
RamÃrez-Gómez, M., Pérez-Moncada, U., Serralde-Ordoñez, D., Peñaranda-Rolón, A., Roveda-Hoyos, G., & Rodriguez, A. (2019). Diversity of arbuscular mycorrhizal fungi communities associated with cape gooseberry (Physalis peruviana l.) crops. Agronomia Colombiana, 37(3), 217–232. https://doi.org/10.15446/agron.colomb.v37n3.74008
Ramos-Zapata, J.A., Zapata-Trujillo, R., OrtÃz-DÃaz, J.J., & Guadarrama, P. (2011). Arbuscular mycorrhizas in a tropical coastal dune system in Yucatan, Mexico. Fungal Ecology, 4(4), 256–261. https://doi.org/10.1016/j.funeco.2010.12.002
Rashid, F., Dhanapal, K. Sravani, K., & Saba, K. (2017). Potato and ginger peels: A potential new source of natural antioxidants. MOJ Food Processing & Technology, 4(5), 129–132. https://doi.org/10.15406/mojfpt.2017.04.00103
Rodrigues, B., & Thangavelu, M. (2009). Arbuscular Mycorrhizae of Goa – A manual of identification protocols. Goa University.
Rodrigues, K.M., & Rodrigues, B. F. (2020). Glomus. In Beneficial Microbes in Agro-Ecology: Bacteria and Fungi. Academic Press. https://doi.org/10.1016/B978-0-12-823414-3.00027-7
Saravanakumar, A., Rajkumar, M., Serebiah, S. ., & Thivakaran, G.A. (2008). Seasonal variations in physico-chemical characteristics of water, sediment and soil texture in arid zone mangroves of Kachchh-Gujarat. Journal of Environmental Biology, 29(5), 725–732.
Scervino, J.M., Ponce, M.A., Erra-Bassells, R., Vierheilig, H., Ocampo, J.A., & Godeas, A. (2005). Flavonoids exhibit fungal species and genus specific effects on the presymbiotic growth of Gigaspora and Glomus. Mycological Research, 109(7), 789–794. https://doi.org/10.1017/S0953756205002881
Sieverding, E., & Oehl, F. (2006). Revision of Entrophospora and description of Kuklospora and Intraspora, two new genera in the arbuscular mycorrhizal Glomeromycetes. Journal of Applied Botany and Food Quality, 80(1), 69–81.
Silva, I.R.da, Mello, C.M.A.de, Ferreira Neto, R. A., Silva, D.K.A.da, Melo, A.L.de, Oehl, F., & Maia, L.C. (2014). Diversity of arbuscular mycorrhizal fungi along an environmental gradient in the Brazilian semiarid. Applied Soil Ecology, 84, 166–175. https://doi.org/10.1016/j.apsoil.2014.07.008
Singh, A., Kiran, S., Saurabh, S., & Kumari, S. (2022). Rhizosphere engineering for crop improvement. In Rhizosphere Engineering (pp. 417–444). Academic Press. https://doi.org/10.1016/B978-0-323-89973-4.00008-9
Sivakumar, N. (2013). Effect of edaphic factors and seasonal variation on spore density and root colonization of arbuscular mycorrhizal fungi in sugarcane fields. Annals of Microbiology, 63(1), 151–160. https://doi.org/10.1007/s13213-012-0455-2
Steinkellner, S., Lendzemo, V., Langer, I., Schweiger, P., Khaosaad, T., Toussaint, J.P., & Vierheilig, H. (2007). Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules, 12(7), 1290–1306. https://doi.org/10.3390/12071290
Strom, N., Hu, W., Haarith, D., Chen, S., & Bushley, K. (2020). Interactions between soil properties, fungal communities, the soybean cyst nematode, and crop yield under continuous corn and soybean monoculture. Applied Soil Ecology, 147(October 2019), 103388. https://doi.org/10.1016/j.apsoil.2019.103388
Sulaeman, Suparto, & Eviati. (2005). Petunjuk Teknis: Analisis Kimia Tanah, Tanaman, dan Pupuk. Balai Penelitian Tanah.
Surendirakumar, K., Pandey, R.R., & Muthukumar, T. (2019). Influence of indigenous arbuscular mycorrhizal fungus and bacterial bioinoculants on growth and yield of Capsicum chinense cultivated in non-sterilized soil. The Journal of Agricultural Science, 157(1), 31–44. https://doi.org/10.1017/S0021859619000261
Tahat, M.M., & Sijam, K. (2012). Mycorrhizal Fungi and abiotic environmental conditions relationship. Research Journal of Environmental Sciences, 6(4), 125–133. https://doi.org/10.3923/rjes.2012.125.133
Tian, B., Pei, Y., Huang, W., Ding, J., & Siemann, E. (2021). Increasing flavonoid concentrations in root exudates enhance associations between arbuscular mycorrhizal fungi and an invasive plant. The ISME Journal, 15(7), 1919–1930. https://doi.org/10.1038/s41396-021-00894-1
Vályi, K., Mardhiah, U., Rillig, M. C., & Hempel, S. (2016). Community assembly and coexistence in communities of arbuscular mycorrhizal fungi. The ISME Journal, 10(10), 2341–2351. https://doi.org/10.1038/ismej.2016.46
Yu, M., Wang, Q., Tao, W., Liu, G., Liu, W., Wang, L., & Ma, L. (2020). Interactions between arbuscular mycorrhizal fungi and soil properties jointly influence plant C, N, and P stoichiometry in West Lake, Hangzhou. RSC Advances, 10(65), 39943–39953. https://doi.org/10.1039/D0RA08185J
Downloads
Published
Issue
Section
License
- Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International Lice that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Teknik Pertanian Lampung
JTEPL is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.