Mycorrhiza Diversity in Some Intercropping Systems of Potato (Solanum tuberosum L) and Faba Bean (Vicia faba L)

Authors

  • Adventio Purnamadya Taurinanda Faculty of Agriculture and Business, Satya Wacana Cristian University
  • Dina Rotua Valentina Banjarnahor Faculty of Agriculture and Business, Satya Wacana Cristian University

DOI:

https://doi.org/10.23960/jtep-l.v12i2.495-508

Abstract

Arbuscular mycorrhizal fungi (AMF) is the most widely distributed mycorrhizal fungi in the soil and can make a symbiosis with the roots of host plants to form arbuscular mycorrhizal symbionts. Intercropping is a practice of polyculture cropping where two or more plant species are simultaneously cultivated in the same field. The objective of this study was to define the effect of intercropping on the density and diversity of mycorrhizal spores. In this study, potatoes and faba beans, both of which have the ability to symbiosis with mycorrhizae, were intercropped. A randomized group design with 5 planting system treatments was employed in this study with 5 replications. The results concluded that density of mycorrhizal spores in the intercropping planting pattern was not statistically different from the density of mycorrhiza in the monoculture cultivation pattern. The types of mycorrhiza found included the genus of Glomus, Funneliformis, Scutellospora, Cetraspora, Septoglomus, and Entrophospora

 

Keywords: pH; Root exudate; Spore density, Spore identification; Spore diversity.

References

Alimi, A., Adeleke, R., & Moteetee, A. (2021). Soil environmental factors shape the rhizosphere arbuscular mycorrhizal fungal communities in South African indigenous legumes (Fabaceae). Biodiversitas Journal of Biological Diversity, 22(5), 2466–2476. https://doi.org/10.13057/biodiv/d220503

Badri, D.V., & Vivanco, J.M. (2009). Regulation and function of root exudates. Plant, Cell and Environment, 32(6), 666–681. https://doi.org/10.1111/j.1365-3040.2009.01926.x

Bainard, L.D., Klironomos, J.N., & Gordon, A.M. (2011). Arbuscular mycorrhizal fungi in tree-based intercropping systems: A review of their abundance and diversity. Pedobiologia, 54(2), 57–61. https://doi.org/10.1016/j.pedobi.2010.11.001

Banjarnahor, D.R.V. (2017). Faba bean: A promising crop for realizing a healthier potato cropping system in the Dieng highlands. Biota : Jurnal Ilmiah Ilmu-Ilmu Hayati, April, 5–9. https://doi.org/10.24002/biota.v1i2.997

Bargaz, A., Nasielski, J., Isaac, M.E., Jensen, E.S., & Carlsson, G. (2021). Faba bean variety mixture can modulate faba bean–wheat intercrop performance under water limitation. Frontiers in Agronomy, 3(June). https://doi.org/10.3389/fagro.2021.655973

Błaszkowski, J., Chwat, G., Góralska, A., Ryszka, P., & Orfanoudakis, M. (2014). Septoglomus jasnowskae and Septoglomus turnauae, two new species of arbuscular mycorrhizal fungi (Glomeromycota). Mycological Progress, 13(4), 985. https://doi.org/10.1007/s11557-014-0985-z

Bouffaud, M.L., Creamer, R.E., Stone, D., Plassart, P., van Tuinen, D., Lemanceau, P., Wipf, D., & Redecker, D. (2016). Indicator species and co-occurrence in communities of arbuscular mycorrhizal fungi at the European scale. Soil Biology and Biochemistry, 103, 464–470. https://doi.org/10.1016/j.soilbio.2016.09.022

Brundrett, M.C., Bougher, N., Dell, B., & Grove, T. (1996). Working with Mycorrhizas in Forestry and Agriculture. Australian Centre for International Agricultural Research. https://doi.org/10.13140/2.1.4880.5444

Chagnon, P.-L., Bradley, R.L., Maherali, H., & Klironomos, J.N. (2013). A trait-based framework to understand life history of mycorrhizal fungi. Trends in Plant Science, 18(9), 484–491. https://doi.org/10.1016/j.tplants.2013.05.001

Chifflot, V., Rivest, D., Olivier, A., Cogliastro, A., & Khasa, D. (2009). Molecular analysis of arbuscular mycorrhizal community structure and spores distribution in tree-based intercropping and forest systems. Agriculture, Ecosystems and Environment, 131(1–2), 32–39. https://doi.org/10.1016/j.agee.2008.11.010

de Souza, T.A.F., Rodriguez-Echeverría, S., de Andrade, L.A., & Freitas, H. (2016). Arbuscular mycorrhizal fungi in Mimosa tenuiflora (Willd.) Poir from Brazilian semi-arid. Brazilian Journal of Microbiology, 47(2), 359–366. https://doi.org/10.1016/j.bjm.2016.01.023

Ehiobu, J., Idamokoro, E., & Afolayan, A. (2022). Biofungicides for improvement of potato (Solanum tuberosum L) production. Scientifica, 2022, 1–9. https://doi.org/10.1155/2022/1405900

Foo, E., Ross, J.J., Jones, W.T., & Reid, J.B. (2013). Plant hormones in arbuscular mycorrhizal symbioses: An emerging role for gibberellins. Annals of Botany, 111(5), 769–779. https://doi.org/10.1093/aob/mct041

Geisseler, D., & Scow, K.M. (2014). Long-term effects of mineral fertilizers on soil microorganisms – A review. Soil Biology and Biochemistry, 75, 54–63. https://doi.org/10.1016/j.soilbio.2014.03.023

Guo, Y., George, E., & Marschner, H. (1996). Contribution of an arbuscular mycorrhizal fungus to the uptake of cadmium and nickel in bean and maize plants. Plant and Soil, 184(2), 195–205. https://doi.org/10.1007/BF00010449

Guzman, A., Montes, M., Hutchins, L., DeLaCerda, G., Yang, P., Kakouridis, A., Dahlquist-Willard, R. M., Firestone, M. K., Bowles, T., & Kremen, C. (2021). Crop diversity enriches arbuscular mycorrhizal fungal communities in an intensive agricultural landscape. New Phytologist, 231(1), 447–459. https://doi.org/10.1111/nph.17306

INVAM. (2022). Entrophospora infrequens. https://invam.ku.edu/infrequens

INVAM. (2023a). Cetraspora pellucida. https://invam.ku.edu/pellucida

INVAM. (2023b). Funneliformis C. Walker & Schüßler. https://invam.ku.edu/glomeraceae-funneliformis

INVAM. (2023c). Funneliformis verruculosus. https://invam.ku.edu/verruculosus

INVAM. (2023d). Glomus pansihalos. https://invam.ku.edu/pansihalos

INVAM. (2023e). Scutellospora bionata. https://invam.ku.edu/biornata

INVAM. (2023f). Septoglomus constrictum. https://invam.ku.edu/constrictum

Jerbi, M., Labidi, S., Lounès-Hadj Sahraoui, A., Chaar, H., & Jeddi, F. Ben. (2020). Higher temperatures and lower annual rainfall do not restrict, directly or indirectly, the mycorrhizal colonization of barley (Hordeum vulgare L.) under rainfed conditions. PLoS ONE, 15(11 November), 1–19. https://doi.org/10.1371/journal.pone.0241794

Johnson, D., Vandenkoornhuyse, P.J., Leake, J.R., Gilbert, L., Booth, R.E., Grime, J.P., Young, J.P.W., & Read, D.J. (2004). Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytologist, 161(2), 503–515. https://doi.org/10.1046/j.1469-8137.2003.00938.x

Khaekhum, S. (2017). Species richness and composition of arbuscular mycorrhizal fungi occurring on eucalypt trees (Eucalyptus camaldulensis Dehnh.) in rainy and dry season. Current Research in Environmental & Applied Mycology, 7(4), 282–292. https://doi.org/10.5943/cream/7/4/5

Li, L., Li, S.M., Sun, J.H., Zhou, L.L., Bao, X.G., Zhang, H.G., & Zhang, F.S. (2007). Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proceedings of the National Academy of Sciences of the United States of America, 104(27), 11192–11196. https://doi.org/10.1073/pnas.0704591104

Li, Z.-R., Wang, J.-X., An, L.-Z., Tan, J.-B., Zhan, F.-D., Wu, J., & Zu, Y.-Q. (2019). Effect of root exudates of intercropping Vicia faba and Arabis alpina on accumulation and sub-cellular distribution of lead and cadmium. International Journal of Phytoremediation, 21(1), 4–13. https://doi.org/10.1080/15226514.2018.1523867

Liu, A., Ku, Y.-S., Contador, C.A., & Lam, H.-M. (2020). The impacts of domestication and agricultural practices on legume nutrient acquisition through symbiosis with rhizobia and arbuscular mycorrhizal fungi. Frontiers in Genetics, 11(September), 1–11. https://doi.org/10.3389/fgene.2020.583954

Liu, X., Feng, Z., Zhao, Z., Zhu, H., & Yao, Q. (2020). Acidic soil inhibits the functionality of arbuscular mycorrhizal fungi by reducing arbuscule formation in tomato roots. Soil Science and Plant Nutrition, 66(2), 275–284. https://doi.org/10.1080/00380768.2020.1721320

Liu, Y., Yin, X., Xiao, J., Tang, L., & Zheng, Y. (2019). Interactive influences of intercropping by nitrogen on flavonoid exudation and nodulation in faba bean. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-019-41146-9

Luo, X., Su, X., Cui, J., Lou, Y., Li, R., Luo, X., Zeng, Y., Xu, Y., & Dong, J. (2016). Biodiversity of arbuscular mycorrhizal fungi in the drawdown zone of the Three Gorges Reservoir under different fertilization histories. Ecological Research, 31(3), 407–416. https://doi.org/10.1007/s11284-016-1356-9

Maj, D., Wielbo, J., Marek-Kozaczuk, M., & Skorupska, A. (2010). Response to flavonoids as a factor influencing competitiveness and symbiotic activity of Rhizobium leguminosarum. Microbiological Research, 165(1), 50–60. https://doi.org/10.1016/j.micres.2008.06.002

Mandal, S.M., Chakraborty, D., & Dey, S. (2010). Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signaling and Behavior, 5(4), 359–368. https://doi.org/10.4161/psb.5.4.10871

Marschner, P. (2011). Rhizosphere Biology. In Marschner’s Mineral Nutrition of Higher Plants: Third Edition. Elsevier Ltd. https://doi.org/10.1016/B978-0-12-384905-2.00015-7

Muleta, D., Assefa, F., Nemomissa, S., & Granhall, U. (2008). Distribution of arbuscular mycorrhizal fungi spores in soils of smallholder agroforestry and monocultural coffee systems in southwestern Ethiopia. Biology and Fertility of Soils, 44(4), 653–659. https://doi.org/10.1007/s00374-007-0261-3

Oehl, F., Laczko, E., Oberholzer, H.R., Jansa, J., & Egli, S. (2017). Diversity and biogeography of arbuscular mycorrhizal fungi in agricultural soils. Biology and Fertility of Soils, 53(7), 777–797. https://doi.org/10.1007/s00374-017-1217-x

Oliveira, A.N. de, & Oliveira, L.A. de. (2005). Seasonal dynamics of arbuscular mycorrhizal fungi in plants of Theobroma grandiflorum Schum and Paullinia cupana Mart. of aN agroforestry system in Central Amazonia, Amazonas State, Brazil. Brazilian Journal of Microbiology, 36(3), 262–270. https://doi.org/10.1590/S1517-83822005000300011

Pacioni, G. (1992). 16 wet-sieving and decanting techniques for the extraction of spores of vesicular-arbuscular fungi. Methods in Microbiology, 24(C), 317–322. https://doi.org/10.1016/S0580-9517(08)70099-0

Palenzuela, J., Azcón-Aguilar, C., Barea, J.-M., da Silva, G.A., & Oehl, F. (2013). Septoglomus altomontanum, a new arbuscular mycorrhizal fungus from mountainous and alpine areas in Andalucía (southern Spain). IMA Fungus, 4(2), 243–249. https://doi.org/10.5598/imafungus.2013.04.02.09

Pande, M., & Tarafdar, J. C. (2004). Arbuscular mycorrhizal fungal diversity in neem-based agroforestry systems in Rajasthan. Applied Soil Ecology, 26(3), 233–241. https://doi.org/10.1016/j.apsoil.2003.12.009

Parihar, M., Rakshit, A., Singh, H.B., & Rana, K. (2019). Diversity of arbuscular mycorrhizal fungi in alkaline soils of hot sub humid eco-region of middle gangetic plains of India. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 69(5), 386–397. https://doi.org/10.1080/09064710.2019.1582692

Pivato, B., Mazurier, S., Lemanceau, P., Siblot, S., Berta, G., Mougel, C., & Van Tuinen, D. (2007). Medicago species affect the community composition of arbuscular mycorrhizal fungi associated with roots. New Phytologist, 176(1), 197–210. https://doi.org/10.1111/j.1469-8137.2007.02151.x

Prasad, R., & Mertia, R.S. (2005). Dehydrogenase activity and VAM fungi in tree-rhizosphere of agroforestry systems in Indian arid zone. Agroforestry Systems, 63(3), 219–223. https://doi.org/10.1007/s10457-004-0536-8

Priya, L.S., Kumutha, K., Arthee, R., & Pandiyarajan, P. (2014). Identification of Arbuscular mycorrhizal multiplicity in the saline-sodic soils. International Journal of Agricultural and Biological Engineering, 7(2), 56–67. https://doi.org/10.3965/j.ijabe.20140702.007

Püschel, D., JanouÅ¡ková, M., Voříšková, A., Gryndlerová, H., Vosátka, M., & Jansa, J. (2017). Arbuscular mycorrhiza stimulates biological nitrogen fixation in two Medicago spp. through improved phosphorus acquisition. Frontiers in Plant Science, 8(March), 1–12. https://doi.org/10.3389/fpls.2017.00390

Rai, I. N., Suada, I.K., Proborini, M.W., Wiraatmaja, I.W., Semenov, M., & Krasnov, G. (2019). The Indigenous endomycorrhizal fungi at salak (Salacca zalacca) plantations in Bali, Indonesia and their colonization of the roots. Biodiversitas Journal of Biological Diversity, 20(8), 2410–2416. https://doi.org/10.13057/biodiv/d200840

Ramírez-Gómez, M., Pérez-Moncada, U., Serralde-Ordoñez, D., Peñaranda-Rolón, A., Roveda-Hoyos, G., & Rodriguez, A. (2019). Diversity of arbuscular mycorrhizal fungi communities associated with cape gooseberry (Physalis peruviana l.) crops. Agronomia Colombiana, 37(3), 217–232. https://doi.org/10.15446/agron.colomb.v37n3.74008

Ramos-Zapata, J.A., Zapata-Trujillo, R., Ortíz-Díaz, J.J., & Guadarrama, P. (2011). Arbuscular mycorrhizas in a tropical coastal dune system in Yucatan, Mexico. Fungal Ecology, 4(4), 256–261. https://doi.org/10.1016/j.funeco.2010.12.002

Rashid, F., Dhanapal, K. Sravani, K., & Saba, K. (2017). Potato and ginger peels: A potential new source of natural antioxidants. MOJ Food Processing & Technology, 4(5), 129–132. https://doi.org/10.15406/mojfpt.2017.04.00103

Rodrigues, B., & Thangavelu, M. (2009). Arbuscular Mycorrhizae of Goa – A manual of identification protocols. Goa University.

Rodrigues, K.M., & Rodrigues, B. F. (2020). Glomus. In Beneficial Microbes in Agro-Ecology: Bacteria and Fungi. Academic Press. https://doi.org/10.1016/B978-0-12-823414-3.00027-7

Saravanakumar, A., Rajkumar, M., Serebiah, S. ., & Thivakaran, G.A. (2008). Seasonal variations in physico-chemical characteristics of water, sediment and soil texture in arid zone mangroves of Kachchh-Gujarat. Journal of Environmental Biology, 29(5), 725–732.

Scervino, J.M., Ponce, M.A., Erra-Bassells, R., Vierheilig, H., Ocampo, J.A., & Godeas, A. (2005). Flavonoids exhibit fungal species and genus specific effects on the presymbiotic growth of Gigaspora and Glomus. Mycological Research, 109(7), 789–794. https://doi.org/10.1017/S0953756205002881

Sieverding, E., & Oehl, F. (2006). Revision of Entrophospora and description of Kuklospora and Intraspora, two new genera in the arbuscular mycorrhizal Glomeromycetes. Journal of Applied Botany and Food Quality, 80(1), 69–81.

Silva, I.R.da, Mello, C.M.A.de, Ferreira Neto, R. A., Silva, D.K.A.da, Melo, A.L.de, Oehl, F., & Maia, L.C. (2014). Diversity of arbuscular mycorrhizal fungi along an environmental gradient in the Brazilian semiarid. Applied Soil Ecology, 84, 166–175. https://doi.org/10.1016/j.apsoil.2014.07.008

Singh, A., Kiran, S., Saurabh, S., & Kumari, S. (2022). Rhizosphere engineering for crop improvement. In Rhizosphere Engineering (pp. 417–444). Academic Press. https://doi.org/10.1016/B978-0-323-89973-4.00008-9

Sivakumar, N. (2013). Effect of edaphic factors and seasonal variation on spore density and root colonization of arbuscular mycorrhizal fungi in sugarcane fields. Annals of Microbiology, 63(1), 151–160. https://doi.org/10.1007/s13213-012-0455-2

Steinkellner, S., Lendzemo, V., Langer, I., Schweiger, P., Khaosaad, T., Toussaint, J.P., & Vierheilig, H. (2007). Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules, 12(7), 1290–1306. https://doi.org/10.3390/12071290

Strom, N., Hu, W., Haarith, D., Chen, S., & Bushley, K. (2020). Interactions between soil properties, fungal communities, the soybean cyst nematode, and crop yield under continuous corn and soybean monoculture. Applied Soil Ecology, 147(October 2019), 103388. https://doi.org/10.1016/j.apsoil.2019.103388

Sulaeman, Suparto, & Eviati. (2005). Petunjuk Teknis: Analisis Kimia Tanah, Tanaman, dan Pupuk. Balai Penelitian Tanah.

Surendirakumar, K., Pandey, R.R., & Muthukumar, T. (2019). Influence of indigenous arbuscular mycorrhizal fungus and bacterial bioinoculants on growth and yield of Capsicum chinense cultivated in non-sterilized soil. The Journal of Agricultural Science, 157(1), 31–44. https://doi.org/10.1017/S0021859619000261

Tahat, M.M., & Sijam, K. (2012). Mycorrhizal Fungi and abiotic environmental conditions relationship. Research Journal of Environmental Sciences, 6(4), 125–133. https://doi.org/10.3923/rjes.2012.125.133

Tian, B., Pei, Y., Huang, W., Ding, J., & Siemann, E. (2021). Increasing flavonoid concentrations in root exudates enhance associations between arbuscular mycorrhizal fungi and an invasive plant. The ISME Journal, 15(7), 1919–1930. https://doi.org/10.1038/s41396-021-00894-1

Vályi, K., Mardhiah, U., Rillig, M. C., & Hempel, S. (2016). Community assembly and coexistence in communities of arbuscular mycorrhizal fungi. The ISME Journal, 10(10), 2341–2351. https://doi.org/10.1038/ismej.2016.46

Yu, M., Wang, Q., Tao, W., Liu, G., Liu, W., Wang, L., & Ma, L. (2020). Interactions between arbuscular mycorrhizal fungi and soil properties jointly influence plant C, N, and P stoichiometry in West Lake, Hangzhou. RSC Advances, 10(65), 39943–39953. https://doi.org/10.1039/D0RA08185J

Downloads

Published

2023-06-15

Issue

Section

Articles