Application of Micro-Nanobubble Aeration in Spinach (Amaranthus viridis) and Pakchoi (Brassica rapa Chinensis) Cultivation with the Wick System

Authors

  • Elisabet Mutiara Hutabarat Universitas Padjadjaran
  • Hilman Syaeful Alam Universitas Padjadjaran
  • Asep Yusuf Universitas Padjadjaran
  • Taufik Ibnu Salim BRIN
  • Norberta Yuni Rusmintia Universitas Padjadjaran

DOI:

https://doi.org/10.23960/jtep-l.v12i3.756-764

Abstract

This study aimed to determine the effect of micro-nanobubble generator (MNBG) aeration on the cultivation of spinach (Amaranthus viridis) and pakchoi (Brassica rapa chinensis) hydroponic wicks. The basic principle of this system is that the axis capillary action flows nutrients to the planting medium. There are no moving parts so the nutrients can settle rapidly and the dissolved oxygen content is limited. Micro-nanobubbles (MNB) have the characteristics of a long residence time in the water so that their generation can operate intermittenttly. This study aims to determine the effect of applying (MNBG) with a flow rate of 0.98 L/minute on root length, plant height, and wet weight of spinach and pakchoi plants in wick hydroponics. Cultivation was hold on a free environment. There are three kinds of treatment; without aeration (N0), aeration 15 minutes x 4 for 24 hours (N15), and aeration 30 minutes x 4 for 24 hours (N30). Variations in the types of materials used in this study were spinach and pakchoi, as per treatment was repeat five samples. The study used a Randomized Block Design (RBD). The measurement results compared by the One-Way ANOVA test (5% level), then continued with Duncan's test to determine the difference. The results showed that there was an effect of applying intermittentt MNBG aeration on the average weight and height of the spinach plants, N15 treatment was more effective than the N0 and N30. Intermittentt MNBG aeration did not show a significant difference in the average weight of pakchoi.

 

Keywords:   Aeration, Hydroponics, Spinach, Pakchoi, wick

References

Alam, H.S., Sutikno, P., Soelaiman, T.A.F., & Sugiarto, A.T. (2021). Bulk Nanobubbles: generation using a two-chamber swirling flow nozzle and long-term stability in water. Jurnal Flow Chemistry, 12, 161–173. https://doi.org/10.1007/s41981-021-00208-8

Ardian, A. (2007). Pertumbuhan dan hasil tanaman cabai pada berbagai tipe emitter dan formulasi nutrisi hidroponik. Jurnal Dinamika Pertanian, 22(3), 195-200.

Aryani, D., Purba, A.P.S., & Malini, H. (2021). Penawaran sayuran hidroponik selama pandemi Covid-19 di Kota Palembang: Faktor-faktor yang mempengaruhi dan elastisitasnya. Prosiding Seminar Nasional Lahan Suboptimal, 9, 465-475.

Bonachela, S., Acuna, R., Magan, J. & Malfa, O. (2010). Oxygen enrichment of nutrient solution of substrate grown vegetable crops under mediterranean greenhouse conditions: Oxygen content dynamics and crop response. Spanish Journal of Agricultural Research, 8, 1231-1241. https://doi.org/10.5424/sjar/2010084-1203

Ebina, K., Shi, K., Hirao, M., Hashimoto, J., Kawato, Y., Kaneshiro, S., Morimoto, T., Koizumi, K., & Yoshikawa, H. (2013). Oxygen and air nanobubble water solution promote the growth of plants, fishes, and mice. PLoS ONE, 8(6), e65339. https://doi.org/10.1371/journal.pone.0065339

Etchepare, R., Oliveira, H., & Nicknig, M. (2017). Nanobubbles: generation using a multiphase pump, properties and features in floatation. Mineral Engineering, 112, 19-26. https://doi.org/10.1016/j.mineng.2017.06.020

Farid, N., Agustono, T., Rohadi, S. & Sarjito, A. (2018). Tanggap pertumbuhan dan hasil tiga varietas slada terhadap jenis nutrisi pada sistem hidroponik rakit apung. Prosiding Seminar Nasional â€Pengembangan Sumber Daya Perdesaan dan Kearifan Lokal Berkelanjutan VIII.†Universitas Jenderal Soedirman, Purwokerto, 14-15 November 2018: 93-99

Fauzi, R., Putra, E.T.S., & Ambarwati, E. (2013). Pengayaan oksigen di zona perakaran untuk meningkatkan pertumbuhan dan hasil selada (Lactuca sativa L.) secara hidroponik. Vegetalika, 2(4), 63-74.

Febriani, N. S., Indradewa, D., & Waluyo, S. (2012). Pengaruh Pemotongan Akar dan Lama Aerasi Media Terhadap Pertumbuhan Selada (Lactuca sativa L.) Nutrient Film Technique. Vegetalika, 1(1), 123-134.

Genesiska, Mulyono & Yufantari, A. I. (2020). Pengaruh jenis tanah terhadap pertumbuhan dan hasil tanaman jagung (Zea mays L.) varietas pulut Sulawesi. Plantropica, 5, 107-117.

Goto, E., Both, A.J., Albright, L.D., Langhans, R.W., Leed, A.R. (1996). Effect of dissolved oxygen concentration on lettuce growth in floating hydroponics. Acta Horticulturae, 440, 205-210. https://doi.org/10.17660/actahortic.1996.440.36

Harjoko, D. (2009). Studi macam media dan debit aliran terhadap pertumbuhan dan hasil tanaman sawi (Brassica juncea L.) secara hidroponik DFT. Jurnal Agrosains, 11(2), 58-62.

Haryanto, E., Suhartini, T., Sunarjono, H., & Rahayu, E. (2007). Sawi dan Selada. Penebar Swadaya, Jakarta: 126 pp.

Kurnia, M.E. (2018). Sistem Hidroponik Wick Organik Menggunakan Limbah Ampas Tahu Terhadap Respon Pertumbuhan Tanaman Pak Choy (Brassica chinensis L.). [Undergraduate Thesis]. Universitas Islam Negeri Raden Intan, Lampung.

Ningrum, D.Y., Triyono, S. & Tusi, A. (2014). Pengaruh lama aerasi terhadap pertumbuhan dan hasil tanaman sawi (Brassica juncea L.) pada hidroponik DFT (Deep Flow Technique). Jurnal Teknik Pertanian Lampung, 3(1), 83-90.

Ningsih, R.I.W., & Aini, N. (2020). Pengaruh durasi penggunaan aerator dan pengaplikasian PGPR (Plant Growth Promoting Rhizobacteria) terhadap pertumbuhan dan hasil tanaman selada (Lactuca sativa L.) pada hidroponik sistem rakit apung. Pantropica, 6(2), 106-114.

Ohnari, H., Tsunami, Y., Matsuo, K., & Maeda, K. (2006). Water purification of a dam lake using micro bubble technology. Progress in Multiphase Flow Research, 1, 279-286. http://dx.doi.org/10.3811/pmfr.1.279

Park, J.S., & Kurata, K. (2009). Application of microbubbles to hydroponics solution promotes lettuce growth. Horttechnology, 19(1), 212-215. http://dx.doi.org/10.21273/HORTSCI.19.1.212

Prihatin, R.B. (2015). Alih fungsi lahan di perkotaan (Studi kasus di Kota Bandung dan Yogyakarta). Aspirasi: Jurnal Masalah-Masalah Sosial, 6(2), 105-118.

Racette, S., Louis, I., & Torrey, J. (1990). Cluster root formation by Gymnostoma papuanum (Casuarinaceae) in relation to aeration and mineral nutrient availability in water culture. Canadian Journal of Botany, 68(12), 2564-2570. https://doi.org/10.1139/b90-323

Romalasari, A., & Enceng, S. (2019). Produksi selada (Lactuca sativa L.) menggunakan sistem hidroponik dengan perbedaan sumber nutrisi. Jurnal Agriprima, 3(1), 36-41.

Saili, I. & Purwadio, H. (2012). Pengendalian alih fungsi lahan pertanian sawah menjadi perkebunan kelapa sawit di Wilayah Kabupaten Siak-Riau. Jurnal Teknik Perencanaan Wilayah dan Kota, 1(1), 1-3.

Shun, C., & Takakura, T. (1994). Rate of root respiration of lettuce under various dissolved oxygen concentrations in hydroponics. Environment Control in Biology, 32(2), 125-135. https://doi.org/10.2525/ecb1963.32.125

Surtinah, S. (2016). Keberadaan oksigen pada media tanam hidroponik terhadap pertumbuhan tanaman sayuran, Jurnal Bibiet, 1(1), 27-35.

Takahashi, M. (2005). Potential of microbubbles in aqueous solutions: Electrical properties of the gas-water interface. J. Phys. Chem. B, 109(46), 21858–21864. https://doi.org/10.1021/jp0445270

Tomiyama, A., Hosokawa, S., Baba, Y., Tomiyama, A., & Ito, Y. (2015). Generation mechanism of micro-bubbles in a pressurized dissolution method. Experimental Thermal and Fluid Science, 60, 201-207. https://doi.org/10.1016/j.expthermflusci.2014.09.010

Wendi, A. (2017). Kajian Aplikasi Aerator Terhadap Pertumbuhan dan Hasil Bayam Hijau dan Bayam Merah Secara Hidroponik DFT (Deep Floating Technique). [Undergraduate Thesis]. Universitas Jenderal Soedirman. Purwokerto.

Xu, G., & Xiao, W. (2020). Effect of nanobubble application on performance and structural characteristics of microbial aggregates. Science of The Total Environment, 765, 142725. https://doi.org/10.1016/j.scitotenv.2020.142725

Yoshida, S., Kitano, M., & Eguchi, H. (1997). Growth of lettuce plants (Latuca sativa L.) under control of dissolve oxygen concentration in hydroponics. Biotronics, 26, 39-45.

Downloads

Published

2023-09-05