Empirical Model for Estimation of Soil Permeability Based on Soil Texture and Porosity

Authors

  • Siti Suharyatun Department of Agricultural Engineering, The University of Lampung
  • Mareli Telaumbanua Department of Agricultural Engineering, The University of Lampung
  • Agus Haryanto Department of Agricultural Engineering, The University of Lampung
  • Febryan Kusuma Wisnu Department of Agricultural Engineering, The University of Lampung
  • Mayrani Tri Pratiwi Department of Agricultural Engineering, The University of Lampung

DOI:

https://doi.org/10.23960/jtep-l.v12i3.533-544

Abstract

Soil permeability is the ability of the soil to pass water or air. Soil permeability is affected by texture, structure, and soil porosity. This study aims to develop a mathematical model to predict the value of soil permeability as a function of the percentage of the constituent fraction of the soil and soil permeability as a function of porosity. The study used soil taken from 7 different locations, with 6 samples for each location, 4 samples for model building and 2 samples for model validation. Parameters observed consisted of the percentage of sand (x1), the percentage of silt (x2), the percentage of clay, (x3), soil porosity (x4) and soil permeability (y). From the analysis, the empirical model obtained is soil permeability as a function of the percentage of constituent fractions of the soil which is expressed by the equation y1=36.796-16.022x2-23.938x3 and soil permeability as a function of porosity is expressed by the equation y2=12+0.65(x4-0.06)-2.92 . The permeability equation as a function of soil constituent fraction (y1) can predict soil permeability with a value of R2 = 0.925 and an RRMSE value of 5.461%, better than the permeability equation as a function of porosity.

 

Keywords:   Empirical model, Multiple linear regression, RRMSE, Soil physical properties, Model validation

References

Arifin, M. (2010). Kajian sifat fisik tanah dan berbagai penggunaan lahan dalam hubungannya dengan pendugaan erosi tanah. MAPETA, 12(2), 111-115.

Dariah, A., Yuzrial, & Mazwar. (2006). Penetapan konduktivitas hidrolik tanah dalam keadaan jenuh: Metode Laboratorium. In Kurnia, U., Agus, F., Adimihardja, A., & Daria, A. (editors). Sifat Fisik Tanah dan Metode Mnalisisnya. Balai Besar Litbang Sumberdaya Lahan Pertanian, Kementerian Pertanian, Jakarta: 172-180.

Despotovic, M., Nedic, V., Despotovic, D., & Cvetanovic, S. (2016). Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation. Renewable and Sustainable Energy Reviews, 56, 246–260. https://doi.org/10.1016/j.rser.2015.11.058

Foth, H.D. (1991). Fundamentals of Soil Science (8th ed.). John Willey & Son, New York.

Haryanto, A., Gita, A.C., Saputra, T.W., & Telaumbanua, M. (2020). First order kinetics of biodiesel synthesis using used frying oil through transesterification reaction. Aceh International Journal of Science and Technology, 9(1), 1-11. https://doi.org/10.13170/ aijst.9.1.13297

Kay, B.D. (1990). Rates of change of soil structure under different cropping systems. In B.A. Stewart (Ed.), Advances in Soil Science 12: Volume 12 (pp. 1–52). Springer. https://doi.org/10.1007/978-1-4612-3316-9_1

Klute, A., & Dirksen, C. (2018). Hydraulic conductivity and diffusivity: Laboratory methods. In A. Klute (Ed.), SSSA Book Series (pp. 687–734). Soil Science Society of America, American Society of Agronomy.

Lal, R., & Shukla, M. (2004). Principle of Soil Physics. CRC Press, Boca Raton.

Li, M.-F., Tang, X.-P., Wu, W., & Liu, H.-B. (2013). General models for estimating daily global solar radiation for different solar radiation zones in mainland China. Energy Conversion and Management, 70, 139–148. https://doi.org/10.1016/j.enconman.2013.03.004

Mawardi, M. (2011). Asas irigasi dan konservasi air (Yogyakarta). Bursa Ilmu. //imt.jogjaprov.go.id/simperpus/index.php?p=show_detail&id=5327&keywords=

Mona, M., Kekenusa, J., & Prang, J. (2015). Penggunaan regresi linear berganda untuk menganalisis pendapatan petani kelapa. Studi kasus: Petani kelapa di Desa Beo, Kecamatan Beo Kabupaten Talaud. de Cartesian, 4(2), 196-203. https://doi.org/10.35799/ dc.4.2.2015.9211

Mulyono, A., Lestiana, H., & Rusydi, A. (2019). Permeabilitas tanah berbagai tipe penggunaan lahan di tanah aluvial pesisir DAS Cimanuk, Indramayu. Jurnal Ilmu Lingkungan, 17, 1-6. https://doi.org/10.14710/jil.17.1.1-6

Munkholm, L.J., Heck, R.J., & Deen, B. (2012). Soil pore characteristics assessed from X-ray micro-CT derived images and correlations to soil friability. Geoderma, 181–182, 22–29. https://doi.org/10.1016/j.geoderma.2012.02.024

Oorts, K., Bossuyt, H., Labreuche, J., Merckx, R., & Nicolardot, B. (2007). Carbon and nitrogen stocks in relation to organic matter fractions, aggregation and pore size distribution in no-tillage and conventional tillage in northern France. European Journal of Soil Science, 58(1), 248–259. https://doi.org/10.1111/j.1365-2389.2006.00832.x

Padilah, T.N., & Adam, R.I. (2019). Analisis rregresi linier berganda dalam estimasi produktivitas tanaman padi di Kabupaten Karawang. Fibonacci: Jurnal Pendidikan Matematika Dan Matematika, 5(2), 117-128. https://doi.org/10.24853/fbc.5.2.117-128

Pagliai, M., Vignozzi, N., & Pellegrini, S. (2004). Soil structure and the effect of management practices. Soil and Tillage Research, 79(2), 131–143. https://doi.org/10.1016/j.still.2004. 07.002

Pinchuk, V., & Kuzmin, A. (2019). Method of approximating experimental data on fuel combustion. International Journal of Energy for a Clean Environment, 20, 261-272 https://doi.org/10.1615/InterJEnerCleanEnv.2019032466

Rohmat, A. (2009). Tipikal Kuantitas Infiltrasi Menurut Karakteristik Lahan. Erlangga, Jakarta.

Sinaga, W.A.L., Sumarno, S., & Sari, I.P. (2022). The Application of multiple linear regression method for population estimation Gunung Malela District. JOMLAI: Journal of Machine Learning and Artificial Intelligence, 1(1), 55–64. https://doi.org/10.55123/jomlai.v1i1.143

Sleutel, S., Bouckaert, L., Buchan, D., Van Loo, D., Cornelis, W.M., & Sanga, H.G. (2012). Manipulation of the soil pore and microbial community structure in soil mesocosm incubation studies. Soil Biology and Biochemistry, 45, 40–48. https://doi.org/10.1016/j.soilbio.2011.09.016

Smucker, A.J.M., Park, E.-J., Dorner, J., & Horn, R. (2007). Soil micropore development and contributions to soluble carbon transport within macroaggregates. Vadose Zone Journal, 6(2), 282–290. https://doi.org/10.2136/vzj2007.0031

Soepardi, G. (1983). Sifat dan ciri tanah. IPB.

Sugiyono. (2006). Statistik untuk Penelitian. Alfabeta.

Suharyatun, S., Rahmawati, W., & Sugianti, C. (2019). Jaringan syaraf tiruan untuk pendugaan porositas tanah. Seminar Nasional Lahan Suboptimal, 1, 424-429.

Sulistyono, S., & Sulistiyowati, W. (2018). Peramalan produksi dengan metode regresi linier berganda. PROZIMA (Productivity, Optimization and Manufacturing System Engineering), 1, 82. https://doi.org/10.21070/prozima.v1i2.1350

Yuliara, I. M. (2016). Modul Regresi Linier Berganda (Vol. 18). FMIPA Udayana.

Downloads

Published

2023-07-20