Radiosensitivity of Two Local Chili Varieties to Gamma Rays

Authors

  • Makhziah Makhziah UPN "Veteran" Jawa Timur
  • Djarwatiningsih Poengky Soedjarwo UPN "Veteran" Jawa Timur

DOI:

https://doi.org/10.23960/jtep-l.v12i2.423-430

Abstract

Genetic variation is needed for developing new superior varieties in plant breeding.  Genetic variation of chili plants could be increased by inducing mutation with gamma rays irradiation. The aim of this study was to determine radiosensitivity of two local varieties of chili pepper by calculating the lethal dose values at LD20 and LD50. Chili pepper (Capsicum frutescens L.) seeds of local varieties origin from Tulungagung and Ponorogo were irradiated with cobalt-60 gamma rays at doses of: 0; 100; 200; 300; 400; 500; 600; 700; 800; 900; 1000 Gray (Gy); each as many as 50 seeds per dose of radiation. The irradiated chili seeds were grown in small polybags containing 1:1 mixture of soil and compost. Germination parameters of chili seeds was observed 30 days after planting (DAT) to determine lethal dose of 20 (LD20) and lethal dose of 50 (LD50). The results showed that increasing doses of gamma rays caused greater damage to chili seeds therefore the seeds were not able to germinate. Local Tulungagung Variety had LD20 and LD50 of 147.62 Gy and 409.52 Gy; and the Local Ponorogo variety had LD20 and LD50 of 90.3 Gray and 453.7 Gray. Local Tulungagung Variety was more sensitive to gamma rays than Local Ponorogo Variety. LD20 and LD50 can be used to get a lot of genetic variation and obtaining the positive mutants.

 

Keywords:  Irradiation, Genetic variation, Lethal dose, Mutation

Author Biography

  • Makhziah Makhziah, UPN "Veteran" Jawa Timur
    Program Studi Agroteknologi

References

Abdel-Hady, M.S., Okasha, E.M., Soliman, S.S.A., & Talaat, M. (2008). Effect of gamma radiation and gibberellic acid on germination and alkaloid production in Atropa Belladonna. Australian Journal of Basic and Applied Sciences, 2(3), 401-405.

Albokari, M.M.A., Alzahrani, S.M., & Alsalman, A.S. (2012). Radiosensitivity of some Local cultivar of wheat (Triticum aestivum L.) to gamma irradiation. Bangladesh Journal of Botany, 41(1), 1–5. https://doi.org/10.3329/bjb.v41i1.11075

Al-Salhi, M., Ghannam, M.M., Al-Ayed, M.S., El-Kameesy, S.U., & Roshdy, S. (2004). Effect of gamma irradiation on the biophysical and morphological properties of corn. Nahrung, 48(2), 95–98. https://doi.org/10.1002/food.200300331

Ãlvarez-Holguín, A., Morales-Nieto, C.R., Avendaño-Arrazatec, C.H., Corrales-Lermab, R., Villarreal-Guerrerob, F., Santellano-Estradab, E., & Gómez-Simutad, Y. (2019). Mean lethal dose (LD50) and growth reduction (GR50) due to gamma radiation in Wilman lovegrass (Eragrostis superba). Rev Mex Cienc Pecu, 10(1), 227-238. http://dx.doi.org/10.22319/ rmcp.v10i1.4327

Anshori, Y.R., Aisyah, S.I., & Darusman, L.K. (2014). Induksi mutasi fisik dengan iradiasi sinar gamma pada kunyit (Curcuma domestica). Jurnal Hortikultura Indonesia, 5(3), 84-94. https://doi.org/10.29244/jhi.5.2.84-94

BPS (Badan Pusat Statistik). (2021). Statistik Indonesia 2021. Badan Pusat Statistik Indonesia.

Datta, S.K. (2019). Determination of radiosensitivity: Prerequisite factor for induced mutagenesis. In Harnessing Plant Biotechnology and Physiology to Stimulate Agricultural Growth. (Eds. C.P. Malik and P.C. Trivedi). India: Agrobios, 39-54.

FAO (2016). Buklet No.1: Budidaya Cabai yang Baik dan Benar. Pembibitan, Penanaman, Pemeliharaan dan Panen Tanaman Cabai.

Gaswanto, R., Syukur, M., Purwoko, B.S., & Hidayat, S.H. (2016). Induced mutation by gamma rays irradiation to increase chilli resistance to begomovirus. AGRIVITA, 38(1), 24-32. https://doi.org/10.17503/agrivita.v38i1.581

Hameed, A., Mahmud, T.S., Atta, B.M., Haq, M.A., & Sayed, H. (2008). Gamma irradiation effects on seed germination and growth, protein content, peroxidase and protease activity, lipid peroxidation in desi and kabuli chickpea. Pakistan Journal of Botany, 40, 1033–1041.

Marcu, D., Damian, G., Cosma, C., Cristea, V. (2013). Gamma radiation effects on seed germination, growth and pigment content, and ESR study of induced free radicals in maize (Zea mays). J Biol Phys., 39(4), 625–634. https://doi.org/10.1007/s10867-013-9322-z

Nepal, Ojha, B. R., Meador, A. J. S., Gaire, S. P., & Shilpakar, C. (2014). Effect of gamma rays on germination and photosynthetic pigments of maize (Zea mays L.) inbreds. Int. J. Res., 1(5): 511–525.

Nura, Syukur, M., Khumaida, N., & Widodo. (2015). Radiosensitivitas dan heritabilitas ketahanan terhadap penyakit antraknosa pada tiga populasi cabai yang diinduksi iradiasi sinar gamma. J. Agron. Indonesia, 43(3), 201–206. https://doi.org/10.24831/jai.v43i3.11245

Nur, A., Syahruddin, K., & Herawati (2015). Pengaruh radiosensivisitas iradiasi sinar gamma terhadap perkembangan kecambah dan pertumbuhan vegetatif tanaman M1 sorgum manis (Sorghum bicolor L.). Prosiding Seminar Nasional Serealia.

Bermawie, N., Meilawati, M.L.W., Purwiyanti, S., & Melati, M. (2015). Pengaruh irradiasi sinar gamma 60Co terhadap pertumbuhan dan produksi jahe putih kecil (Zingeiber offinale var. amarum). Jurnal Littri, 21(2), 47-56.

Nurrachmamila, P.L., & Saputro, T.B. (2017). Analisis daya perkecambahan padi (Oryza sativa L.) varietas Bahbutong hasil iradiasi. Jurnal Sains dan Seni ITS. 6(2), E17-E21.

Prabhandaru, I., & Saputro, T.B. (2017). Respon perkecambahan benih padi (Oryza sativa L.) varietas lokal Si Gadis hasil iradiasi sinar gamma. Jurnal Sains dan Seni ITS. 6(2), E52-E57.

PDSIP (Pusat Data dan Sistim Informasi Pertanian). (2020). Outlook Cabai 2019. Jakarta: Sekretariat Jenderal Kementerian Pertanian.

Rohcahyani, F.E., Moeljani, I.R., & Suhardjono, H., (2022). Qualitative characters diversity of prentul Kediri cayenne pepper mutant (M1) resulted from gamma ray mutation induction. Jurnal Teknik Pertanian Lampung, 11(3), 483-493. http://dx.doi.org/10.23960/jtep-l.v11i3.483-493

Shu, Q.Y. (2013). Plant Mutation Breeding. Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture International Atomic EnerGray Agency, Vienna, Austria. 139-160 p.

Shukla (2016). Effect of gamma irradiation on cytokines released by planlets during storage. Journal of Radiation Research and Applied Sciences, 9(1), 15-19. https://doi.org/10.1016/j.jrras.2015.08.002

Soeranto, H. (2012). Pemanfaatan teknologi nuklir untuk pemuliaan sorghum. Makalah Workshop on the current status and challenges in sorghum development in Indonesia. SEAMEO BIOTROP, Bogor, 25- 26 September 2012

Sudrajat, D.J., & Zanzibar, M. (2009). Prospek teknologi radiasi sinar gamma dalam peningkatan mutu benih tanaman hutan. Info Benih. 13, 158-163.

Sutapa, G.N., Widyasari, N.L., & Dewi, N.K.A.A. (2013). Mendalami respon adaptasi sel terhadap paparan radiasi pengion. Buletin Alara, 15(1), 9-14.

Syukur, M., Yunianti, R., Rustam, & Widodo (2013). Pemanfaatan sumber daya genetik lokal dalam perakitan varietas unggul cabai (Capsicum annuum) tahan terhadap penyakit antraknosa yang disebabkan oleh Colletotrichum sp. Jurnal Ilmu Pertanian Indonesia (JIPI), 18(2), 67-72.

Tah, P.R. (2006). Studies on gamma ray induced mutation in mungben (Vigna radiate). Asian J Plant Sci. 5, 61-70. https://doi.org/10.3923/ajps.2006.61.70

Thilagavathi, C, & Mullainathan (2011). Influence of physical and chemical mutagens on quantitative characters of Vigna mungo (L. Hepper). Intern Multidisciplinary Reseacrh Journal, 1, 06-08.

Warid, Khumaida, N. Purwito, A., & Syukur, M. (2017). Pengaruh iradiasi sinar gamma pada generasi pertama (M1) untuk mendapatkan genotipe unggul baru kedelai toleran kekeringan. Agrotrop, 7(1), 11-21. https://doi.org/10.24843/AJoAS.2017.v07.i01.p02

Zafar, S.A., Aslam, M., Albaqami, M., Ashraf, A., Hassan, A., Iqbal, J., Maqbool, A., Naeem, M., Al-Yahyai, R., & Zuan, A.T.K. (2022). Gamma rays induced genetic variability in tomato (Solanum lycopersicum L.) germplasm. Saudi Journal of Biological Sciences, 29(5), 3300–3307. https://doi.org/10.1016/j.sjbs.2022.02.008

Downloads

Published

2023-05-29

Issue

Section

Articles