Design and Simulation of Chassis for Electric Cultivator

Authors

  • Dwi Santoso Universitas Borneo Tarakan
  • Abdul Waris Universitas Hasanuddin
  • Saat Egra Gifu University

DOI:

https://doi.org/10.23960/jtep-l.v12i1.174-185

Abstract

Building or designing an electric cultivator requires a comprehensive study by paying attention to each main component, namely the chassis. The chassis serves as a place to attach the constituent components and holds the weight of the overall components contained in the tool. A good machine frame will increase the workability of the machine because the components that make up the cultivator are in the right layout. A good chassis design is needed to improve the performance of the electric cultivator. This study aims to design and simulate the strength analysis of the electric cultivator frame. This research consists of several stages, namely literature review, frame design, chassis strength simulation and chassis cultivator capability analysis. From the results of the analysis concluded that technically this tool is classified as safe with a loading condition of 18 kg and a support on its axis. However, it is still recommended that before production, the tool design must be re-optimized. Especially at the joints of the upper and lower frames near the pillow block. This is because this cross section is a critical area because it has a large equivalent stress value, has a small life cycle, and has a low safety factor.


Keywords:   Design, Electric
cultivator, Simulation

Author Biography

  • Dwi Santoso, Universitas Borneo Tarakan
    prodi agroteknologi, akreditasi B

References

Arsić, D., Gnjatović, N., Sedmak, S., Arsić, A., & UhriÄik, M. (2019). Integrity assessment and determination of residual fatigue life of vital parts of bucket-wheel excavator operating under dynamic loads. Engineering Failure Analysis, 105, 182–195.

Baker, A. A. (2011). A proposed approach for certification of bonded composite repairs to flight-critical airframe structure. Applied Composite Materials, 18(4), 337–369.

Barbagallo, R., Sequenzia, G., Cammarata, A., Oliveri, S. M., & Fatuzzo, G. (2018). Redesign and multibody simulation of a motorcycle rear suspension with eccentric mechanism. International Journal On Interactive Design And Manufacturing (Ijidem), 12(2), 517–524.

Bray, D.E., & Stanley, R.K. (2018). Nondestructive Evaluation: A Tool in Design, Manufacturing, and Service. CRC Press.

Cottrell, J.A., Hughes, T.J.R., & Reali, A. (2007). Studies of refinement and continuity in isogeometric structural analysis. Computer Methods In Applied Mechanics And Engineering, 196(41–44), 4160–4183.

Dhir, D. K. (2018). Thermo-mechanical performance of automotive disc brakes. Materials Today: Proceedings, 5(1), 1864–1871.

Eli-Chukwu, N.C. (2019). Applications of artificial intelligence in agriculture: A review. Engineering, Technology & Applied Science Research, 9(4), 4377–4383. https://doi.org/10.48084/Etasr.2756

Gkioxari, G., & Malik, J. (2015). Finding action tubes. Proceedings of The IEEE Conference on Computer Vision and Pattern Recognition, 759–768.

Grünbühel, C.M., Haberl, H., Schandl, H., & Winiwarter, V. (2003). Socioeconomic metabolism and colonization of natural processes in sangsaeng village: Material and energy flows, land use, and cultural change in Northeast Thailand. Human Ecology, 31(1), 53–86.

Huang, W., Xie, L., Li, C., Jia, D., Chai, B., Mu, Y., Hou, C., & Dai, W. (2020). Ananalytical and experimental study of t-shaped composite stiffened panels: effect of 90 plies in stringers on curing and buckling performance. Applied Composite Materials, 27(5), 597–618.

Imran, A.I., & Kadir, K. (2017). Simulasi tegangan von mises dan analisa safety factor gantry crane kapasitas 3 ton. Dinamika: Jurnal Ilmiah Teknik Mesin, 8(2), 1-4.

James, M.N., Hughes, D.J., Chen, Z., Lombard, H., Hattingh, D.G., Asquith, D., Yates, J.R., & Webster, P.J. (2007). Residual stresses and fatigue performance. Engineering Failure Analysis, 14(2), 384–395.

Kumar, S.D, Karthik, D., Parida, S.K., & Jha, S.K. (2019). Optimization of semi-solid-forging parameters of a356–5tib 2 in situ composites using ANSYS and DEFORM Simulation. In Innovations in Soft Computing and Information Technology. Springer, 279–286.

Lal, R. (2008). Soils and sustainable agriculture. A review. Agronomy for Sustainable Development, 28(1), 57–64.

Lohar, S., Patil, V., Save, S., & Thakur, R. (2022). Design and analysis of independent suspension system of a FSAE Vehicle. In Recent Advances in Manufacturing Modelling and Optimization. Springer, 439–452.

Nawaz, M. F., Bourrie, G., & Trolard, F. (2013). Soil compaction impact and modelling. A review. Agronomy for Sustainable Development, 33(2), 291–309.

Osgood, C.C. (2013). Fatigue Design: International Series on The Strength and Fracture of Materials and Structures. Elsevier.

Phady, A., Rajmi, A., Ramadhani, F., Andalan, M.T.P., Aski, S., & Alie, M.Z.M. (2020). Pengaruh optimasi beban rangka tubular terhadap analisis kekuatan tekuk dan kelelahan pada fixed offshore platform. SENSISTEK: Riset Sains dan Teknologi Kelautan, 13–18.

Rakshith, N. (2017). Design & Fabrication of Mini Tiller. ATMECE.

Riyaz, S. (2021). Multipurpose Agriculture Cultivator. Scienceopen Preprints.

Rizky, A. P., Mulyatno, I. P., & Jokosisworo, S. (2016). Analisa fatigue kontruksi main deck sebagai penumpu towing hook akibat beban tarik pada kapal tug boat 2 x 800 hp dengan metode elemen hingga. Jurnal Teknik Perkapalan, 4(1).

Santoso, D., & Murdianto, D. (2022). Artificial intelligence in the perspectives of agricultural technology development in Indonesia. Budapest International Research and Critics Institute (BIRCI-Journal): Humanities and Social Sciences, 5(1), 4348–4354.

Santoso, D., Rahajeng, G.Y., & Wijaya, R. (2020). Identifikasi kebutuhan alsintan tanaman pangan (padi dan jagung) di Kota Tarakan. Jurnal Ilmiah Inovasi, 20(3).

Scott-Emuakpor, O., George, T., Cross, C., Wertz, J., & Shen, M.-H.H. (2012). A new distortion energy-based equivalent stress for multiaxial fatigue life prediction. International Journal of Non-Linear Mechanics, 47(3), 29–37.

Singh, S. K., Kumar, D., Jha, G. K., & Nain, P. K. S. (2022). Design and analysis of overhead ambulance. In Advances in Mechanical Engineering and Technology. Springer, 531–543.

Spanaki, K., Sivarajah, U., Fakhimi, M., Despoudi, S., & Irani, Z. (2021). Disruptive technologies in agricultural operations: A systematic review of ai-driven agritech research. Annals Of Operations Research, 1–34.

Sugiyanto, D., Pangestu, R.A., Chan, Y., & Uyun, A.S. (2022). Design and performance testing of semi-automatic machine for potato peeler-cutter. Jurnal Teknik Pertanian Lampung, 11(2), 325–338.

Wibawa, L.A.N. (2020). Simulasi umur fatik rangka main landing gear menggunakan metode elemen hingga. Dinamika dan Teknik Mesin: Jurnal Keilmuan dan Terapan Teknik Mesin, 10(2), 120–126.

Wu, X., Chen, Q., Zhao, B., Zhang, K., & Wang, P. (2022). Safety assessment of aircraft panel under the impact load by tire fragment based on thermal–mechanical effect. Journal of Materials Engineering and Performance, 32, 1119–1132.

Yahya, N. (2018). Agricultural 4.0: Its implementation toward future sustainability. In Green Urea. Springer, 125–145.

Downloads

Published

2023-03-04

Issue

Section

Articles