Groundwater Potential Zone Classification Using Geospatial Approach

Authors

DOI:

https://doi.org/10.23960/jtep-l.v12i2.288-301

Abstract

Groundwater is an important process in the watershed hydrological system. Serayu watershed, the largest in Central Java Province, has bio-physic spatial variability that influences groundwater recharging. The aim is to derive the groundwater potential zone of the Serayu watershed. Five thematic maps used and applied for groundwater potential analysis, were lithology, land use land cover, lineament density, drainage density, and slope gradient. Distribution of Lithology data, Digital Elevation Model (DEM), and Landsat 8 image were analyzed to thematic raster with 1 x 1 km resolution. Weighted index was calculated regarding the relation of five influence parameters then were overlaid and calculated by using QGIS-calculator. Groundwater classified into five categories, namely poor, low, moderate, good, and very good. Based on the final groundwater potential map, 0.02% of 3,727 km2 is poor category, however most of Serayu watershed have moderate to good (48.77 and 29.77 %, respectively). The percentage of very good (10.57%) and low (10.87%) classes were rather similar. Spatial variability of groundwater distribution indicates the complex characteristics of the Serayu watershed, so more serious attention from the perspective of research and management of water resources in the future, is needed.

   

 Keywords:  Groundwater, Multi-criteria, QGIS, Recharging, Serayu watershed. 

 

Author Biographies

  • Afik Hardanto, Jenderal Soedirman University
    Department of Agricultural Engineering
  • Asna Mustofa, Jenderal Soedirman University
    Department of Agricultural Engineering
  • Ardiansyah Ardiansyah, Jenderal Soedirman University
    Department of Agricultural Engineering

References

Achu, A. L., Thomas, J., & Reghunath, R. (2020). Multi-criteria decision analysis for delineation of groundwater potential zones in a tropical river basin using remote sensing, GIS and analytical hierarchy process (AHP). Groundwater for Sustainable Development, 10, 100365. https://doi.org/10.1016/j.gsd.2020.100365

Alshehri, F., & Abdelrahman, K. (2021). Groundwater resources exploration of Harrat Khaybar area, northwest Saudi Arabia, using electrical resistivity tomography. Journal of King Saud University - Science, 33(5), 101468. https://doi.org/10.1016/j.jksus.2021.101468

Andersen, T.R. (2020). Detailed Geophysical Mapping and Hydrogeological Characterisation of the Subsurface for Optimal Placement of Infiltration-Based Sustainable Urban Drainage Systems. Geosciences, 10(11), 446. https://doi.org/10.3390/geosciences10110446

Arulbalaji, P., Padmalal, D., & Sreelash, K. (2019). GIS and AHP techniques based delineation of groundwater potential zones: A case study from Southern Western Ghats, India. Scientific Reports, 9(1), 2082. https://doi.org/10.1038/s41598-019-38567-x

Atmaja, R.R.S., Putra, D.P.E., & Setijadji, L.D. (2019). Delineation of groundwater potential zones using remote sensing, GIS, and AHP techniques in southern region of Banjarnegara, Central Java, Indonesia. In S.B. Wibowo, A.B. Rimba, A.A. Aziz, S. Phinn, J.T. Sri Sumantyo, H. Widyasamratri, & S. Arjasakusuma (Eds.), Sixth Geoinformation Science Symposium (p. 23). SPIE. https://doi.org/10.1117/12.2548473

Ayazi, M.H., Pirasteh, S., Pili, A.K.A., Biswajeet, P., Nikouravan, B., & Mansor, S. (2010). Disasters and risk reduction in groundwater: Zagros mountain Southwest Iran using geoinformatics techniques. Disaster Advances, 3(1), 1-8.

Carroll, M.L., Townshend, J.R., DiMiceli, C.M., Noojipady, P., & Sohlberg, R.A. (2009). A new global raster water mask at 250 m resolution. International Journal of Digital Earth, 2(4), 291–308. https://doi.org/10.1080/17538940902951401

Çelik, R. (2019). Evaluation of groundwater potential by GIS-based multicriteria decision making as a spatial prediction tool: Case study in the Tigris River Batman-Hasankeyf Sub-Basin, Turkey. Water, 11(12), 2630. https://doi.org/10.3390/w11122630

Chaudhary, B.S., & Kumar, S. (2018). Identification of groundwater potential zones using remote sensing and GIS of K-J Watershed, India. Journal of the Geological Society of India, 91(6), 717–721. https://doi.org/10.1007/s12594-018-0929-3

Christanto, N., Sartohadi, J., Setiawan, M. A., Shrestha, D.B.P., & Jetten, V.G. (2018). Land use change analysis using spectral similarity and vegetation indices and its effect on runoff and sediment yield in tropical environment. IOP Conference Series: Earth and Environmental Science, 148, 012017. https://doi.org/10.1088/1755-1315/148/1/012017

Díaz-Alcaide, S., Martínez-Santos, P., & Villarroya, F. (2017). A commune-level groundwater potential map for the Republic of Mali. Water, 9(11), 839. https://doi.org/10.3390/w9110839

Freeze, R.A., & Cherry, J.A. (1979). Groundwater. Prentice-Hall.

Galata, A.W., Demissei, T.A., & Leta, M.K. (2020). Watershed hydrological responses to changes in land use and land cover at Hangar Watershed, Ethiopia. Iranian Journal of Energy and Environment, 11(1). https://doi.org/10.5829/IJEE.2020.11.01.01

Ghosh, B. (2021). Spatial mapping of groundwater potential using data-driven evidential belief function, knowledge-based analytic hierarchy process and an ensemble approach. Environmental Earth Sciences, 80(18), 625. https://doi.org/10.1007/s12665-021-09921-y

Goderniaux, P., Brouyère, S., Blenkinsop, S., Burton, A., Fowler, H.J., Orban, P., & Dassargues, A. (2011). Modeling climate change impacts on groundwater resources using transient stochastic climatic scenarios. Water Resources Research, 47(12). https://doi.org/10.1029/2010WR010082

Grinevskii, S.O., & Pozdnyakov, S.P. (2010). Principles of regional estimation of infiltration groundwater recharge based on geohydrological models. Water Resources, 37(5), 638–652. https://doi.org/10.1134/S0097807810050040

Hardanto, A., Ardiansyah, & Mustofa, A. (2021). Crop stage classification using supervised algorithm based on UAV and Landsat 8 image. IOP Conference Series: Earth and Environmental Science, 653, 012102. https://doi.org/10.1088/1755-1315/653/1/012102

Hardanto, A., Ardiansyah, Mustofa, A., & Taryana, A. (2021). Waterfall exploration in banyumas regency based on ecotourism environmental protection (EEP) approach for water conservation. IOP Conference Series: Earth and Environmental Science, 757, 012044. https://doi.org/10.1088/1755-1315/757/1/012044

Herho, S.H.S., Siregar, P.M., Syarief, I., Irawan, D.E., & Sinaga, J. (2018). Mapping groundwater potential zones in Cilongok Area, Banyumas, Central Java using 2D geoelectrical resistivity. Geophysics. https://doi.org/10.48550/arXiv.1812.04111

Hermawan, H., & Å vajlenka, J. (2022). Building envelope and the outdoor microclimate variable of vernacular houses: Analysis on the environmental elements in tropical coastal and mountain areas of Indonesia. Sustainability 14(3), 1818. https://doi.org/10.3390/su14031818

Herrmann, J.T., & Hammer, E.L. (2019). Archaeo-geophysical survey of Bronze and Iron Age fortress landscapes of the South Caucasus. Journal of Archaeological Science: Reports, 24, 663–676. https://doi.org/10.1016/j.jasrep.2019.02.019

Huang, C.-C., Yeh, H.-F., Lin, H.-I., Lee, S.-T., Hsu, K.-C., & Lee, C.-H. (2013). Groundwater recharge and exploitative potential zone mapping using GIS and GOD techniques. Environmental Earth Sciences, 68(1), 267–280. https://doi.org/10.1007/s12665-012-1737-5

Iqbal, M., & Juliarka, B. R. (2019). Analisis kerapatan kelurusan (lineament density) di lapangan panasbumi Suoh-Sekincau, Lampung. Journal of Science and Applicative Technology, 3(2), 61. https://doi.org/10.35472/jsat.v3i2.212

Jung, H. B. (2020). Geochemical and hydrological study of coastal groundwater discharging to an urban estuary in northern New Jersey. Environmental Earth Sciences, 79(6), 158. https://doi.org/10.1007/s12665-020-8888-6

Kabeto, J., Adeba, D., Regasa, M. S., & Leta, M. K. (2022). Groundwater potential assessment using gis and remote sensing techniques: Case study of West Arsi Zone, Ethiopia. Water, 14(12), 1838. https://doi.org/10.3390/w14121838

Kendarto, D.R., Suryadi, E., Sampurno, R.M., & Cahyabhuana, A.P. (2021). Daya dukung sumberdaya air dan indeks kekritisan air Sub DAS Cisokan Hulu. Jurnal Teknik Pertanian Lampung, 10(3), 402-412. https://doi.org/10.23960/ jtep-l.v10i3.402-412

Kumar, C. P. (1999). Sustainable utilisation of water resource in watershed perspective – A case study in Alaunja Watershed, Hazaribagh, Bihar. Journal of the Indian Society of Remote Sensing, 27(1), 13–22. https://doi.org/10.1007/BF02990771

Laermanns, H., May, S.M., Kelterbaum, D., Kirkitadze, G., Opitz, S., Navrozashvili, L., Elashvili, M., & Brückner, H. (2019). Coastal lowland and floodplain evolution along the lower reaches of the Supsa River (western Georgia). E&G Quaternary Science Journal, 68(2), 119–139. https://doi.org/10.5194/egqsj-68-119-2019

Letz, O., Siebner, H., Avrahamov, N., Egozi, R., Eshel, G., & Dahan, O. (2021). The impact of geomorphology on groundwater recharge in a semi-arid mountainous area. Journal of Hydrology, 603, 127029. https://doi.org/10.1016/j.jhydrol.2021.127029

Li, M.G., Chen, J.J., Xu, Y.S., Tong, D.G., Cao, W.W., & Shi, Y.J. (2021). Effects of groundwater exploitation and recharge on land subsidence and infrastructure settlement patterns in Shanghai. Engineering Geology, 282, 105995. https://doi.org/10.1016/j.enggeo.2021. 105995

Li, S., Yang, H., Lacayo, M., Liu, J., & Lei, G. (2018). Impacts of land-use and land-cover changes on water yield: A case study in Jing-Jin-Ji, China. Sustainability, 10(4), 960. https://doi.org/10.3390/su10040960

Liaqat, M.U., Mohamed, M. M., Chowdhury, R., Elmahdy, S.I., Khan, Q., & Ansari, R. (2021). Impact of land use/land cover changes on groundwater resources in Al Ain region of the United Arab Emirates using remote sensing and GIS techniques. Groundwater for Sustainable Development, 14, 100587. https://doi.org/10.1016/j.gsd.2021.100587

Magesh, N.S., Chandrasekar, N., & Soundranayagam, J.P. (2012). Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geoscience Frontiers, 3(2), 189–196. https://doi.org/10.1016/j.gsf.2011. 10.007

Mallick, J., Khan, R.A., Ahmed, M., Alqadhi, S.D., Alsubih, M., Falqi, I., & Hasan, M.A. (2019). Modeling groundwater potential zone in a semi-arid region of Aseer using fuzzy-AHP and geoinformation techniques. Water, 11(12), 2656. https://doi.org/10.3390/w11122656

Marhendi, T., & Munir, A. S. (2018). Dampak perubahan landuse terhadap debit puncak banjir sungai Serayu hulu. Jurnal Techno, 22(1), 13-26. https://doi.org//10.30595/techno. v22i1.9009

Morton, L.W., & Olson, K.R. (2018). The pulses of the mekong river basin: Rivers and the livelihoods of farmers and fishers. Journal of Environmental Protection, 09(04), 431–459. https://doi.org/10.4236/jep.2018.94027

Naseem, S., Rafique, T., Bashir, E., Bhanger, M.I., Laghari, A., & Usmani, T.H. (2010). Lithological influences on occurrence of high-fluoride groundwater in Nagar Parkar area, Thar Desert, Pakistan. Chemosphere, 78(11), 1313–1321. https://doi.org/10.1016/j. chemosphere.2010.01.010

Nasir, M.J., Khan, S., Zahid, H., & Khan, A. (2018). Delineation of groundwater potential zones using GIS and multi influence factor (MIF) techniques: A study of district Swat, Khyber Pakhtunkhwa, Pakistan. Environmental Earth Sciences, 77(10), 367. https://doi.org/10.1007/s12665-018-7522-3

Ngadisih, A., Suryatmojo, H., Nugroho, P., Sutyaningtyas, M., Novindasari, A., Keiblinger, K., Mentler, A., & Kral, R. (2018). Integrated agro-forestry systems to reduce the risks for soil erosion and land-sliding in Serayu Watershed – Indonesia. Geophysical Research Abstracts, p. 1193.

Nsiah, E., Appiah-Adjei, E.K., & Adjei, K.A. (2018). Hydrogeological delineation of groundwater potential zones in the Nabogo basin, Ghana. Journal of African Earth Sciences, 143, 1–9. https://doi.org/10.1016/j.jafrearsci.2018.03.016

Purnama, S. (2010). Potensi sumberdaya air DAS Serayu. Jurnal Rekayasa Lingkungan, 6(3), 291-302. https://doi.org/10.29122/jrl.v6i3.1942

Saranya, T., & Saravanan, S. (2020). Groundwater potential zone mapping using analytical hierarchy process (AHP) and GIS for Kancheepuram District, Tamilnadu, India. Modeling Earth Systems and Environment, 6(2), 1105–1122. https://doi.org/10.1007/s40808-020-00744-7

Shiklomanov, I. A. (1998). World Water Resources: A New Appraisal and Assessment for The 21st Century. The United Nations Educational, Scientific and Cultural Organization.

Singh, S., Singh, C., & Mukherjee, S. (2010). Impact of land-use and land-cover change on groundwater quality in the Lower Shiwalik hills: A remote sensing and GIS based approach. Open Geosciences, 2(2), 124–131. https://doi.org/10.2478/v10085-010-0003-x

Sresto, M. A., Siddika, S., Haque, Md. N., & Saroar, M. (2021). Application of fuzzy analytic hierarchy process and geospatial technology to identify groundwater potential zones in north-west region of Bangladesh. Environmental Challenges, 5, 100214. https://doi.org/10.1016/j.envc.2021.100214

Thivya, C., Chidambaram, S., Singaraja, C., Thilagavathi, R., Prasanna, M.V., Anandhan, P., & Jainab, I. (2013). A study on the significance of lithology in groundwater quality of Madurai district, Tamil Nadu (India). Environment, Development and Sustainability, 15(5), 1365–1387. https://doi.org/10.1007/s10668-013-9439-z

Yeh, H.-F., Lee, C.-H., Hsu, K.-C., & Chang, P.-H. (2009). GIS for the assessment of the groundwater recharge potential zone. Environmental Geology, 58(1), 185–195. https://doi.org/10.1007/s00254-008-1504-9

Yifru, B.A., Mitiku, D.B., Tolera, M.B., Chang, S.W., & Chung, I.-M. (2020). Groundwater potential mapping using SWAT and GIS-based multi-criteria decision analysis. KSCE Journal of Civil Engineering, 24(8), 2546–2559. https://doi.org/10.1007/s12205-020-0168-1

Zipper, S.C., Jaramillo, F., Wangâ€Erlandsson, L., Cornell, S.E., Gleeson, T., Porkka, M., Häyhä, T., Crépin, A., Fetzer, I., Gerten, D., Hoff, H., Matthews, N., Ricaurteâ€Villota, C., Kummu, M., Wada, Y., & Gordon, L. (2020). Integrating the water planetary boundary with water management from local to global scales. Earth’s Future, 8(2). https://doi.org/10. 1029/2019EF001377

Downloads

Published

2023-04-02

Issue

Section

Articles