Groundwater Potential Zone Classification Using Geospatial Approach
DOI:
https://doi.org/10.23960/jtep-l.v12i2.288-301Abstract
Groundwater is an important process in the watershed hydrological system. Serayu watershed, the largest in Central Java Province, has bio-physic spatial variability that influences groundwater recharging. The aim is to derive the groundwater potential zone of the Serayu watershed. Five thematic maps used and applied for groundwater potential analysis, were lithology, land use land cover, lineament density, drainage density, and slope gradient. Distribution of Lithology data, Digital Elevation Model (DEM), and Landsat 8 image were analyzed to thematic raster with 1 x 1 km resolution. Weighted index was calculated regarding the relation of five influence parameters then were overlaid and calculated by using QGIS-calculator. Groundwater classified into five categories, namely poor, low, moderate, good, and very good. Based on the final groundwater potential map, 0.02% of 3,727 km2 is poor category, however most of Serayu watershed have moderate to good (48.77 and 29.77 %, respectively). The percentage of very good (10.57%) and low (10.87%) classes were rather similar. Spatial variability of groundwater distribution indicates the complex characteristics of the Serayu watershed, so more serious attention from the perspective of research and management of water resources in the future, is needed.
Keywords: Groundwater, Multi-criteria, QGIS, Recharging, Serayu watershed.
References
Achu, A. L., Thomas, J., & Reghunath, R. (2020). Multi-criteria decision analysis for delineation of groundwater potential zones in a tropical river basin using remote sensing, GIS and analytical hierarchy process (AHP). Groundwater for Sustainable Development, 10, 100365. https://doi.org/10.1016/j.gsd.2020.100365
Alshehri, F., & Abdelrahman, K. (2021). Groundwater resources exploration of Harrat Khaybar area, northwest Saudi Arabia, using electrical resistivity tomography. Journal of King Saud University - Science, 33(5), 101468. https://doi.org/10.1016/j.jksus.2021.101468
Andersen, T.R. (2020). Detailed Geophysical Mapping and Hydrogeological Characterisation of the Subsurface for Optimal Placement of Infiltration-Based Sustainable Urban Drainage Systems. Geosciences, 10(11), 446. https://doi.org/10.3390/geosciences10110446
Arulbalaji, P., Padmalal, D., & Sreelash, K. (2019). GIS and AHP techniques based delineation of groundwater potential zones: A case study from Southern Western Ghats, India. Scientific Reports, 9(1), 2082. https://doi.org/10.1038/s41598-019-38567-x
Atmaja, R.R.S., Putra, D.P.E., & Setijadji, L.D. (2019). Delineation of groundwater potential zones using remote sensing, GIS, and AHP techniques in southern region of Banjarnegara, Central Java, Indonesia. In S.B. Wibowo, A.B. Rimba, A.A. Aziz, S. Phinn, J.T. Sri Sumantyo, H. Widyasamratri, & S. Arjasakusuma (Eds.), Sixth Geoinformation Science Symposium (p. 23). SPIE. https://doi.org/10.1117/12.2548473
Ayazi, M.H., Pirasteh, S., Pili, A.K.A., Biswajeet, P., Nikouravan, B., & Mansor, S. (2010). Disasters and risk reduction in groundwater: Zagros mountain Southwest Iran using geoinformatics techniques. Disaster Advances, 3(1), 1-8.
Carroll, M.L., Townshend, J.R., DiMiceli, C.M., Noojipady, P., & Sohlberg, R.A. (2009). A new global raster water mask at 250 m resolution. International Journal of Digital Earth, 2(4), 291–308. https://doi.org/10.1080/17538940902951401
Çelik, R. (2019). Evaluation of groundwater potential by GIS-based multicriteria decision making as a spatial prediction tool: Case study in the Tigris River Batman-Hasankeyf Sub-Basin, Turkey. Water, 11(12), 2630. https://doi.org/10.3390/w11122630
Chaudhary, B.S., & Kumar, S. (2018). Identification of groundwater potential zones using remote sensing and GIS of K-J Watershed, India. Journal of the Geological Society of India, 91(6), 717–721. https://doi.org/10.1007/s12594-018-0929-3
Christanto, N., Sartohadi, J., Setiawan, M. A., Shrestha, D.B.P., & Jetten, V.G. (2018). Land use change analysis using spectral similarity and vegetation indices and its effect on runoff and sediment yield in tropical environment. IOP Conference Series: Earth and Environmental Science, 148, 012017. https://doi.org/10.1088/1755-1315/148/1/012017
DÃaz-Alcaide, S., MartÃnez-Santos, P., & Villarroya, F. (2017). A commune-level groundwater potential map for the Republic of Mali. Water, 9(11), 839. https://doi.org/10.3390/w9110839
Freeze, R.A., & Cherry, J.A. (1979). Groundwater. Prentice-Hall.
Galata, A.W., Demissei, T.A., & Leta, M.K. (2020). Watershed hydrological responses to changes in land use and land cover at Hangar Watershed, Ethiopia. Iranian Journal of Energy and Environment, 11(1). https://doi.org/10.5829/IJEE.2020.11.01.01
Ghosh, B. (2021). Spatial mapping of groundwater potential using data-driven evidential belief function, knowledge-based analytic hierarchy process and an ensemble approach. Environmental Earth Sciences, 80(18), 625. https://doi.org/10.1007/s12665-021-09921-y
Goderniaux, P., Brouyère, S., Blenkinsop, S., Burton, A., Fowler, H.J., Orban, P., & Dassargues, A. (2011). Modeling climate change impacts on groundwater resources using transient stochastic climatic scenarios. Water Resources Research, 47(12). https://doi.org/10.1029/2010WR010082
Grinevskii, S.O., & Pozdnyakov, S.P. (2010). Principles of regional estimation of infiltration groundwater recharge based on geohydrological models. Water Resources, 37(5), 638–652. https://doi.org/10.1134/S0097807810050040
Hardanto, A., Ardiansyah, & Mustofa, A. (2021). Crop stage classification using supervised algorithm based on UAV and Landsat 8 image. IOP Conference Series: Earth and Environmental Science, 653, 012102. https://doi.org/10.1088/1755-1315/653/1/012102
Hardanto, A., Ardiansyah, Mustofa, A., & Taryana, A. (2021). Waterfall exploration in banyumas regency based on ecotourism environmental protection (EEP) approach for water conservation. IOP Conference Series: Earth and Environmental Science, 757, 012044. https://doi.org/10.1088/1755-1315/757/1/012044
Herho, S.H.S., Siregar, P.M., Syarief, I., Irawan, D.E., & Sinaga, J. (2018). Mapping groundwater potential zones in Cilongok Area, Banyumas, Central Java using 2D geoelectrical resistivity. Geophysics. https://doi.org/10.48550/arXiv.1812.04111
Hermawan, H., & Å vajlenka, J. (2022). Building envelope and the outdoor microclimate variable of vernacular houses: Analysis on the environmental elements in tropical coastal and mountain areas of Indonesia. Sustainability 14(3), 1818. https://doi.org/10.3390/su14031818
Herrmann, J.T., & Hammer, E.L. (2019). Archaeo-geophysical survey of Bronze and Iron Age fortress landscapes of the South Caucasus. Journal of Archaeological Science: Reports, 24, 663–676. https://doi.org/10.1016/j.jasrep.2019.02.019
Huang, C.-C., Yeh, H.-F., Lin, H.-I., Lee, S.-T., Hsu, K.-C., & Lee, C.-H. (2013). Groundwater recharge and exploitative potential zone mapping using GIS and GOD techniques. Environmental Earth Sciences, 68(1), 267–280. https://doi.org/10.1007/s12665-012-1737-5
Iqbal, M., & Juliarka, B. R. (2019). Analisis kerapatan kelurusan (lineament density) di lapangan panasbumi Suoh-Sekincau, Lampung. Journal of Science and Applicative Technology, 3(2), 61. https://doi.org/10.35472/jsat.v3i2.212
Jung, H. B. (2020). Geochemical and hydrological study of coastal groundwater discharging to an urban estuary in northern New Jersey. Environmental Earth Sciences, 79(6), 158. https://doi.org/10.1007/s12665-020-8888-6
Kabeto, J., Adeba, D., Regasa, M. S., & Leta, M. K. (2022). Groundwater potential assessment using gis and remote sensing techniques: Case study of West Arsi Zone, Ethiopia. Water, 14(12), 1838. https://doi.org/10.3390/w14121838
Kendarto, D.R., Suryadi, E., Sampurno, R.M., & Cahyabhuana, A.P. (2021). Daya dukung sumberdaya air dan indeks kekritisan air Sub DAS Cisokan Hulu. Jurnal Teknik Pertanian Lampung, 10(3), 402-412. https://doi.org/10.23960/ jtep-l.v10i3.402-412
Kumar, C. P. (1999). Sustainable utilisation of water resource in watershed perspective – A case study in Alaunja Watershed, Hazaribagh, Bihar. Journal of the Indian Society of Remote Sensing, 27(1), 13–22. https://doi.org/10.1007/BF02990771
Laermanns, H., May, S.M., Kelterbaum, D., Kirkitadze, G., Opitz, S., Navrozashvili, L., Elashvili, M., & Brückner, H. (2019). Coastal lowland and floodplain evolution along the lower reaches of the Supsa River (western Georgia). E&G Quaternary Science Journal, 68(2), 119–139. https://doi.org/10.5194/egqsj-68-119-2019
Letz, O., Siebner, H., Avrahamov, N., Egozi, R., Eshel, G., & Dahan, O. (2021). The impact of geomorphology on groundwater recharge in a semi-arid mountainous area. Journal of Hydrology, 603, 127029. https://doi.org/10.1016/j.jhydrol.2021.127029
Li, M.G., Chen, J.J., Xu, Y.S., Tong, D.G., Cao, W.W., & Shi, Y.J. (2021). Effects of groundwater exploitation and recharge on land subsidence and infrastructure settlement patterns in Shanghai. Engineering Geology, 282, 105995. https://doi.org/10.1016/j.enggeo.2021. 105995
Li, S., Yang, H., Lacayo, M., Liu, J., & Lei, G. (2018). Impacts of land-use and land-cover changes on water yield: A case study in Jing-Jin-Ji, China. Sustainability, 10(4), 960. https://doi.org/10.3390/su10040960
Liaqat, M.U., Mohamed, M. M., Chowdhury, R., Elmahdy, S.I., Khan, Q., & Ansari, R. (2021). Impact of land use/land cover changes on groundwater resources in Al Ain region of the United Arab Emirates using remote sensing and GIS techniques. Groundwater for Sustainable Development, 14, 100587. https://doi.org/10.1016/j.gsd.2021.100587
Magesh, N.S., Chandrasekar, N., & Soundranayagam, J.P. (2012). Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geoscience Frontiers, 3(2), 189–196. https://doi.org/10.1016/j.gsf.2011. 10.007
Mallick, J., Khan, R.A., Ahmed, M., Alqadhi, S.D., Alsubih, M., Falqi, I., & Hasan, M.A. (2019). Modeling groundwater potential zone in a semi-arid region of Aseer using fuzzy-AHP and geoinformation techniques. Water, 11(12), 2656. https://doi.org/10.3390/w11122656
Marhendi, T., & Munir, A. S. (2018). Dampak perubahan landuse terhadap debit puncak banjir sungai Serayu hulu. Jurnal Techno, 22(1), 13-26. https://doi.org//10.30595/techno. v22i1.9009
Morton, L.W., & Olson, K.R. (2018). The pulses of the mekong river basin: Rivers and the livelihoods of farmers and fishers. Journal of Environmental Protection, 09(04), 431–459. https://doi.org/10.4236/jep.2018.94027
Naseem, S., Rafique, T., Bashir, E., Bhanger, M.I., Laghari, A., & Usmani, T.H. (2010). Lithological influences on occurrence of high-fluoride groundwater in Nagar Parkar area, Thar Desert, Pakistan. Chemosphere, 78(11), 1313–1321. https://doi.org/10.1016/j. chemosphere.2010.01.010
Nasir, M.J., Khan, S., Zahid, H., & Khan, A. (2018). Delineation of groundwater potential zones using GIS and multi influence factor (MIF) techniques: A study of district Swat, Khyber Pakhtunkhwa, Pakistan. Environmental Earth Sciences, 77(10), 367. https://doi.org/10.1007/s12665-018-7522-3
Ngadisih, A., Suryatmojo, H., Nugroho, P., Sutyaningtyas, M., Novindasari, A., Keiblinger, K., Mentler, A., & Kral, R. (2018). Integrated agro-forestry systems to reduce the risks for soil erosion and land-sliding in Serayu Watershed – Indonesia. Geophysical Research Abstracts, p. 1193.
Nsiah, E., Appiah-Adjei, E.K., & Adjei, K.A. (2018). Hydrogeological delineation of groundwater potential zones in the Nabogo basin, Ghana. Journal of African Earth Sciences, 143, 1–9. https://doi.org/10.1016/j.jafrearsci.2018.03.016
Purnama, S. (2010). Potensi sumberdaya air DAS Serayu. Jurnal Rekayasa Lingkungan, 6(3), 291-302. https://doi.org/10.29122/jrl.v6i3.1942
Saranya, T., & Saravanan, S. (2020). Groundwater potential zone mapping using analytical hierarchy process (AHP) and GIS for Kancheepuram District, Tamilnadu, India. Modeling Earth Systems and Environment, 6(2), 1105–1122. https://doi.org/10.1007/s40808-020-00744-7
Shiklomanov, I. A. (1998). World Water Resources: A New Appraisal and Assessment for The 21st Century. The United Nations Educational, Scientific and Cultural Organization.
Singh, S., Singh, C., & Mukherjee, S. (2010). Impact of land-use and land-cover change on groundwater quality in the Lower Shiwalik hills: A remote sensing and GIS based approach. Open Geosciences, 2(2), 124–131. https://doi.org/10.2478/v10085-010-0003-x
Sresto, M. A., Siddika, S., Haque, Md. N., & Saroar, M. (2021). Application of fuzzy analytic hierarchy process and geospatial technology to identify groundwater potential zones in north-west region of Bangladesh. Environmental Challenges, 5, 100214. https://doi.org/10.1016/j.envc.2021.100214
Thivya, C., Chidambaram, S., Singaraja, C., Thilagavathi, R., Prasanna, M.V., Anandhan, P., & Jainab, I. (2013). A study on the significance of lithology in groundwater quality of Madurai district, Tamil Nadu (India). Environment, Development and Sustainability, 15(5), 1365–1387. https://doi.org/10.1007/s10668-013-9439-z
Yeh, H.-F., Lee, C.-H., Hsu, K.-C., & Chang, P.-H. (2009). GIS for the assessment of the groundwater recharge potential zone. Environmental Geology, 58(1), 185–195. https://doi.org/10.1007/s00254-008-1504-9
Yifru, B.A., Mitiku, D.B., Tolera, M.B., Chang, S.W., & Chung, I.-M. (2020). Groundwater potential mapping using SWAT and GIS-based multi-criteria decision analysis. KSCE Journal of Civil Engineering, 24(8), 2546–2559. https://doi.org/10.1007/s12205-020-0168-1
Zipper, S.C., Jaramillo, F., Wangâ€Erlandsson, L., Cornell, S.E., Gleeson, T., Porkka, M., Häyhä, T., Crépin, A., Fetzer, I., Gerten, D., Hoff, H., Matthews, N., Ricaurteâ€Villota, C., Kummu, M., Wada, Y., & Gordon, L. (2020). Integrating the water planetary boundary with water management from local to global scales. Earth’s Future, 8(2). https://doi.org/10. 1029/2019EF001377
Downloads
Published
Issue
Section
License
- Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International Lice that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Teknik Pertanian Lampung
JTEPL is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.