Application of Wischmeier-Smith, EPIC, M-USLE, and WEPP Methods for Determination of Erodibility Factor (K) of Soil

Authors

  • Brigitta Ery Septiyanti
  • Ngadisih Ngadisih Faculty of Agricultural Technology Universitas Gadjah Mada http://orcid.org/0000-0002-3763-7422
  • Chandra Setyawan Department of Agricultural and Biosystem Engineering, Faculty of Agricultural Technology, Universitas Gadjah Mada
  • Sahid Susanto Department of Agricultural and Biosystem Engineering, Faculty of Agricultural Technology, Universitas Gadjah Mada

DOI:

https://doi.org/10.23960/jtep-l.v12i3.653-664

Abstract

The purpose of this study was to apply and to evaluate four methods (Wischmeier-Smith, EPIC, M-USLE, and WEPP) for calculating erodibility factor (K) of soil. The field measurement was carried out in a village laid on Southern Mountains of Java, where cocoa-based agrotourism is growing fast in the area. The land use of study area was captured by using drone. The soil samples were taken from land use of shrub, moors, and garden. Then, the samples were analyzed physical and chemical properties. This study obtained the K factor was in the range 0.12 to 0.22 for Wischmeir-Smith, 0.29 to 0.33 for EPIC, 10−3 to 310−4 for M-USLE, and 210−4 to 0.1 for WEPP. Based on literature (similar study and site, or soil type approach), the K factor obtained from Wischmeier-Smith method was in the range of reference. While other methods, the K factor was higher or lower than benchmark value.  The proposed method in this study could be applied to calculate K factors of soil. However, the M-USLE and WEPP methods still have shortcomings in the simulation process of erosion and surface run off rates to obtain the K factor.

 

 Keywords: Agrotourism, Drone, Land use, Soil erosion

Author Biography

  • Chandra Setyawan, Department of Agricultural and Biosystem Engineering, Faculty of Agricultural Technology, Universitas Gadjah Mada
    s_susanto@ugm.ac.id

References

Agustina, H., & Dewi, V.A.K. (2020). Analisa erosi metode USLE pada lahan sawit Kabupaten Muara Enim. Jurnal Teknik Pertanian Lampung, 9(3), 157-162. http://dx.doi.org/10.23960/jtep-l.v9i3.157-162

Arsyad, S. (2010). Konservasi Tanah dan Air (2nd ed.). IPB Press, Bogor.

Ashari, A. (2013). Kajian tingkat erodibilitas beberapa jenis tanah di Pegunungan Batur Agung Desa Putat dan Nglanggeran Kecamatan Patuk Kabupaten Gunung Kidul. Informasi, 39, 15–31.

BMKG (Badan Meteorologi Klimatologi dan Geofisika). (2021). Probabilistik curah hujan 20 mm (tiap 24 jam). https://www.bmkg.go.id/cuaca/probabilistik-curah-hujan.bmkg

Brouwer, D., & Jenkins, A. (2015). Managing for Healthy Soil: A Guide - A Practical Handbook. NSW Agriculture. Tocal - New South Wales.

Djufri, A.N.H., Rombang, J.A., & Tasirin, J.S. (2021). Erodibilitas tanah pada Kawasan Hutan Lindung Gunung Masarang. Cocos, 13(3), 1–11.

Fahliza, U., Putranto, D.D.A., & Sarino. (2013). Analisis erosi Sub-DAS Lematang Hulu. Jurnal Teknik Sipil Dan Lingkungan, 1(1), 32–39.

Guo, Z.Q., Zhou, H.K., Chen, W.J., Wu, Y., Li, Y. Z., Qiao, L.L., You, Q.M., Liu, G.B., & Xue, S. (2022). Impacts of 21-year field warming on soil erodibility in the Qinghai-Tibetan Plateau, China. Geoderma, 405, 115382. https://doi.org/10.1016/j.geoderma.2021.115382

Hanafiah, K.A. (2005). Dasar-Dasar Ilmu Tanah. PT. Raja Grafindo Persada.

Hubbert, M.K. (1957). Darcy’s law and the field equations of the flow of underground fluids. Hydrological Sciences Journal, 2(1), 23–59.

Joniardi, Trides, T., & Magdalena, H. (2020). Studi tingkat erodibilitas tanah pada rencana pit Cincong Seam 50 PT. Lanna Harita Indonesia Sub CV. Rizky Maha Karya Utama, Kota Samarinda, Provinsi Kalimantan Timur. Jurnal Teknologi Mineral FT UNMUL, 8(2), 6–12.

Kinnell, P.I.A. (1993). Interrill erodibilities based on the rainfall intensity flow discharge erosivity factor. Journal of Soil Research, 31(3), 319–332.

Kinnell, P.I.A., Wang, J., & Zheng, F. (2018). Comparison of the abilities of WEPP and the USLE-M to predict event soil loss on steep loessal slopes in China. Catena, 171, 99–106. https://doi.org/10.1016/j.catena.2018.07.007

Kurnia, U., Sutrisno, N., & Sungkawa, I. (2010). Perkembangan lahan kritis. In Membalik Kecenderungan Degradasi Sumber Daya Lahan dan Air (Editors: K. Suradisastra, S.M. Pasaribu, B. Sayaka, A. Dariah, I. Las, Haryono, & E. Pasandaran). Badan Penelitian dan Pengembangan Pertanian, Jakarta: 143–160.

Kusumandari, A. (2014). Soil erodibility of several types of green open space areas in Yogyakarta City, Indonesia. Procedia Environmental Sciences, 20, 732–736. https://doi.org/10.1016/j.proenv.2014.03.087

Liu, M., Han, G., & Li, X. (2021). Using stable nitrogen isotope to indicate soil nitrogen dynamics under agricultural soil erosion in the Mun River basin, Northeast Thailand. Ecological Indicators, 128, 107814. https://doi.org/10.1016/j.ecolind.2021.107814

Majhi, A., Shaw, R., Mallick, K., & Patel, P.P. (2021). Towards improved USLE-based soil erosion modelling in India: A review of prevalent pitfalls and implementation of exemplar methods. Earth-Science Reviews, 221, 103786. https://doi.org/10.1016/j.earscirev.2021.103786

Masroor, M., Sajjad, H., Rehman, S., Singh, R., Hibjur Rahaman, M., Sahana, M., Ahmed, R., & Avtar, R. (2022). Analysing the relationship between drought and soil erosion using vegetation health index and RUSLE models in Godavari middle sub-basin, India. Geoscience Frontiers, 13(2), 101312. https://doi.org/10.1016/j.gsf.2021.101312

Mulyono, A., Rusydi, A.F., & Lestiana, H. (2019). Permeabilitas tanah berbagai tipe penggunaan lahan di tanah Aluvial Pesisir DAS Cimanuk, Indramayu. Jurnal Ilmu Lingkungan, 17(1), 1-6. https://doi.org/10.14710/jil.17.1.1-6

Saputra, D.D., Putrantyo, A.R., & Kusuma, Z. (2018). Hubungan kandungan bahan organik tanah dengan berat isi, porositas dan laju infiltrasi pada Perkebunan Salak di Kecamatan Purwosari, Kabupaten Pasuruan. Jurnal Tanah dan Sumberdaya Lahan, 5(1), 647–654.

Satriawan, H., & Fuady, Z. (2015). Teknologi Konservasi Tanah dan Air. Deepublish.

Septiyanti, B.E. (2022). Perbandingan Nilai Erodibilitas Tanah dengan Model Wischmeier, EPIC, USLE-M dan WEPP. [Undergraduate Thesis]. Fakultas Teknologi Pertanian, Universitas Gadjah Mada, Yogyakarta.

Sharpley, A.N., & Williams, J.R. (1990). EPIC-erosion productivity impact calculator: model documentation. USDA Technical Bulletin Number 1768. U.S. Government Printing Office, Washington, D.C.

Wahyunto, W., & Dariah, A. (2014). Degradasi lahan di Indonesia: Kondisi existing, karakteristik, dan penyeragaman definisi mendukung gerakan menuju satu peta. Jurnal Sumberdaya Lahan, 8(2), 81-93.

Wang, G., Fang, Q., Wu, B., Yang, H., & Xu, Z. (2015). Relationship between soil erodibility and modeled infiltration rate in different soils. Journal of Hydrology, 528, 408–418. https://doi.org/10.1016/j.jhydrol.2015.06.044

Wischmeier, W.H., & Smith, D.D. (1978). Predicting Rainfall Erosion Losses: A Guide To Conservation Planning. Agriculture Handbook No. 537, USDA, Washington, D.C.

Yusof, N.F., Lihan, T., Idris, W.M.R., Ali Rahman, Z., Mustapha, M.A., & Yusof, M.A.W. (2021). Spatially distributed soil losses and sediment yield: A case study of Langat watershed, Selangor, Malaysia. Journal of Asian Earth Sciences, 212, 104742. https://doi.org/10.1016/j.jseaes.2021.104742

Downloads

Published

2023-09-04