Evaluation of the Coolnet Placement Distance to Direct Evaporative Cooling to Increase Potato Seed Production in Aeroponic Systems with Root Zone Cooling in the Lowlands

Authors

  • Eni Sumarni Program Studi Teknik Pertanian. Jurusan Teknologi Pertanian. Universitas Jenderal Soedirman. Purwokerto.
  • Priswanto Priswanto Jurusan Teknik Elektro. Fakultas Teknik. Universitas Jendral Soedirman. Jl. Mayjen Sungkono Km.05 Blater, Kalimanah, Purbalingga
  • Zaroh Irayani Program Studi Fisika. Fakultas MIPA. Universitas Jenderal Soedirman. Purwokerto, Jl. dr. Suparno, Karangwangkal. Postal Code. 53123
  • Noor Farid Jurusan Agroteknologi. Fakultas Pertanian Unsoed. Purwokerto. Postal Code. 53123.

DOI:

https://doi.org/10.23960/jtep-l.v12i2.413-422

Abstract

Evaluation of the placement of the coolnet distance on direct evaporative cooling is needed in order to reduce the wilting percentage and improve seed production of potatoes. The aim of the study was to obtain the appropriate coolnet distance for the growth and development of aeroponic potato seedlings in evaporative cooling and root zone cooling applications in the tropical lowlands. The factors tested were: 1) Evaporative cooling (JEvap) distance: JEvap1 (25 cm from the top zone of the plant), JEvap2 (50 cm from the top zone), and Jevap3 (60 cm), and 2) Varieties (V): V1 (MZ), V2 (Granola K), V3 (Granola L). The design used was completely randomized design with 2 replications. Growth data and results were analyzed by the F test and continued with Duncan's Multiple Range Test (DMRT) at 5% level. The results showed that the direct evaporative cooling method and the coolnet spacing of 50-60 cm which were integrated with root zone cooling created an air temperature at the top of the plant 26-28 °C, reduced the percentage of burnt wilting, and increased the number of tubers by an average of 31.4 to 41.7 tubers/plant.

 

Keywords: Aeroponic, cooling system, growth environment, hidroponic, limited control.

References

Ahmed, H.A., Yu-xin, T., Qi-chang, Y., Al-Faraj, A.A., & Abdel-Ghany, A.M. (2019). Spatial distribution of air temperature and relative humidity in the greenhouse as affected by external shading in arid climates. Journal of Integrative Agriculture, 18(12), 2869–2882. https://doi.org/10.1016/S2095-3119(19)62598-0

Al-Rawahy, M.S., Al-Rawahy, S.A., Al-Mulla, Y.A., & Nada, S.K. (2019). Effect of cooling root-zone temperature on growth, yield and nutrient uptake in cucumber grown in hydroponic system during summer season in cooled greenhouse. Journal of Agricultural Science, 11(1), 47-60. https://doi.org/10.5539/jas.v11n1p47

Alves-Damasceno, F., Barreto-Mendes, L., Yanagi, T., Luiz-de Oliveira, J., & Osorio-Saraz, J.A. (2017). Assessment of evaporative cooling efficiency in greenhouses equiped with wetted porous plates. DYNA, 84(203), 118-125. https://doi.org/10.15446/dyna.v84n203. 59564

Amaliah, W., Syukur, M., & Suhardiyanto, H. (2018). Pengaruh pendinginan daerah perakaran terhadap produksi cabai (Capsicum annuum L.) di dalam rumah tanaman kawasan tropika. Jurnal Hortikultura Indonesia, 9(2), 139-147. http://dx.doi.org/10.29244/jhi.9.2.139-147

Chamroon, C., & Aungkurabrut, R. (2019). Performance evaluation of a small backyard hydroponics greenhouse using automatic evaporative cooling system. IOP Conf. Series: Earth and Environmental Science, 301, 012024. https://doi.org/10.1088/1755-1315/301/1/012024

Dianawati, M., Ilyas, S., Wattimena, G.A., & Susila, A.D. (2013). Produksi umbi mini kentang secara aeroponik melalui penentuan dosis optimum pupuk daun nitrogen. Jurnal Hortikultura, 23(1), 47-55.

Díaz-Pérez, J.C. (2009). Root zone temperature, plant growth and yield of broccoli [Brassica oleracea (Plenck) var. italica] as affected by plastic film mulches. Scientia Horticulturae, 123(2), 156–163. https://doi.org/10.1016/j.scienta.2009.08.014

Hancock, R.D., Morris, W.L., Ducreux, L.J.M., Morris, J.A., Usman, M., Verrall, S.R., & Taylor, M.A. (2013). Physiological, biochemical and molecular responses of the potato (Solanum tuberosum L.) plant to moderately elevated temperature. Plant Cell and Environment, 37(2), 439-450. http://dx.doi.org/10.1111/pce.1216

Helmy, M.A., Eltawil, M.A., Aboshieshaa, R.R., & Elzan, N.M. (2013). Enhancing the evaporative cooling performance of fan-pad system using alternative pad materials and water film over the greenhouse roof. Agricultural Engineering International: CIGR Journal, 15(2), 173-187.

Jie, H., & Kong, L.S. (1997). Growth and photosynthetic characteristics of lettuce (Lactuca sativa L.) under fluctuating hot ambient temperatures with the manipulation of cool root-zone temperature. Journal of Plant Physiology, 152(4-5), 387-391. https://doi.org/10.1016/S0176-1617(98)80252-6

Kawasaki, Y., Matsuo, S., Suzuki, K., Kanayama, Y., & Kanahama, K. (2013). Root-zone cooling at high air temperatures enhances physiological activities and internal structures of roots in young tomato plants. J. Japan. Soc. Hort. Sci., 82(4), 322–327.

Liu, X., Yang, S., Chen, X., Liu, S., Zhou, R., Guo, L., Sun, Y., & Cao, Y. (2022). Performance evaluation of a water-circulating tomato root-zone substrate-cooling system using a chiller and its effect on tomato vegetative growth in Chinese solar greenhouse. Agronomy, 12(8), 1922. https://doi.org/10.3390/agronomy12081922

Mizuno, S., Muramatsu, Y., Tateishi, A., Watanabe, K., Shinmachi, F., Koshioka, M., & Kubota, S. (2022). Effects of root-zone cooling with short-day treatment in pot-grown strawberry (Fragaria × ananassa Duch.) nurseries on flowering and fruit production. The Horticulture Journal, 91(1), 1–7. https://doi.org/10.2503/hortj.UTD-290

Muthoni, J., & Kabira, J.N. (2015). Potato production in the hot tropical areas of Africa: Progress made in breeding for heat tolerance. Journal of Agricultural Science, 7(9), 220-227. https://doi.org/10.5539/jas.v7n9p220

Newir, A.E., Ibrahim, M.A., Halawa, M.A., & Abdellatif, O.E. (2017). Direct and indirect evaporative cooling for closed greenhouse during the summer peak hours. Benha Journal of Applied Sciences (BJAS), 2(1), 105-111.

Otazu, V. (2010). Manual on quality seed potato production using aeroponics. International Potato Center (CIP). Lima, Peru. 44p.

Park, S.W., Jeon, J.H., Kim, H.S., Hong, S.J., Swath, C., & Joung, H. (2009). The effect of size and quality of potato microtubers on quality of seed potatoes in the cultivar ‘Superior’. Scientia Horticulturae, 120(1), 127-129. https://doi.org/10.1016/j.scienta.2008.09.004

Sitopu, F.L.M., & Yunianto, B. (2015). Pengujian direct evaporative cooling posisi vertikal dengan aliran searah. Jurnal Teknik Mesin, 3(3), 345-351.

Sumarni, E., Hardanto, A., & Arsil, P. (2019). Pendinginan evaporative dengan teknik semburan untuk memperbaiki kondisi bagian atas tanaman pada aeroponik benih kentang dataran rendah. Paten sederhana terdaftar (No. S0020191150). Direktorat Jenderal HKI, Jakarta.

Sumarni, E., Suhardiyanto, H., Seminar, K.B., & Saptomo, S.K. (2013). Aplikasi pendinginan zona perakaran (root zone cooling) pada produksi benih kentang menggunakan sistem aeroponik. Jurnal Agronomi Indonesia, 41, 154-159.

Sumarni, E., Hardanto, A., & Arsil, P. (2021a). Effect of root zone cooling and evaporative cooling in greenhouse on the growth and yield of potato seed by aeroponics in tropical lowlands. Agricultural Engineering International: CIGR Journal, 23(1), 28-35.

Sumarni, E., Priswanto, P., & Irayani, Z. (2021b). Metode penempatan jarak coolnet pada pendinginan evaporative dengan teknik semburan untuk produksi benih kentang secara aeroponik di dataran rendah tropika. Patent terdaftar (No. S00202105053). Direktorat Jenderal HKI, Jakarta.

Sumarni, E., Priswanto, P., & Irayani, Z. (2022). Application of electrical conductivity (EC) for some potato varieties in the aeroponically seed production with root zone cooling and evaporative cooling in tropical lowlands. Jurnal Teknik Pertanian Lampung, 11(2), 184-194. http://dx.doi.org/10.23960/jtep-l.v11.i2.184-194

Tadesse, M., Lommen, W.J.M., & Struik, P.C. (2001). Effect of temperature pre treatment of transplants from iv vitro produced potato plantlets on transplant growth and yield in the field. NJAS: Wageningen Journal of Life Sciences, 49(1), 67-79. https://doi.org/10.1016/S1573-5214(01)80016-6

Yunianto, B. (2018). Pemanfaatan evaporative cooling untuk meningkatkan kenyamanan ruang. Rotasi, 20(1), 29-32.

Downloads

Published

2023-05-27

Issue

Section

Articles