Mathematical Model of Drying Edamame (Glycine max (L.) Merill) Using Food Dehydrator Technology Based on Multiple Linear Regression (MLR) and Artificial Neural Network (ANN)

Authors

  • Rizza Wijaya Politeknik Negeri Jember http://orcid.org/0000-0002-8778-4711
  • Silvia Oktavianur Yudiastuti Politeknik Negeri Jember
  • Anna Mardhiana Handayani Politeknik Negeri Jember
  • Elok Kurnia Novita Sari Politeknik Negeri Jember
  • Tri Wahyu Saputra Universitas Jember
  • Febryan Kusuma Wisnu Universitas Lampung
  • Aulia Brilliantina Politeknik Negeri Jember

DOI:

https://doi.org/10.23960/jtep-l.v11i4.589-600

Abstract

Edamame is included in perishable products or products that have a fairly short shelf life if post-harvest processing is not carried out. One of the post-harvest processing methods commonly used by the community is drying. The purpose of this study was to analyze the drying process of edamame related to the MLRL and ANN models. This study used a completely randomized design (CRD) with three variations of air velocity, namely 1 m/s, 3 m/s, and 5 m/s. Data collection was repeated three times every 30 minutes until 330 minutes.  Multiple linear regression (MLR) model training and validation produce accuracy values of 88.03 and 82.23, and the value of R2 of 0.93 and 0.90. While the training and validation of the artificial neural network (ANN) model resulted in accuracy values of 88.34 and 82.15, and R2 values of 0.93 and 0.90.

 

Keywords:    ANN, Drying, Edamame, Food  dehydrator

Author Biography

  • Rizza Wijaya, Politeknik Negeri Jember
    AE

References

Adhitya, R.Y., Ramadhan, M. A., Kautsar, S., Rinanto, N., Sarena, S.T., Munadhif, I., Syaiin, M., Soelistijono, R.T., & Soeprijanto, A. (2017). Comparison methods of fuzzy logic control and feed forward neural network in automatic operating temperature and humidity control system (oyster mushroom farm house) using microcontroller. International Symposium on Electronics and Smart Devices (ISESD 2016), 168–173. https://doi.org/10.1109/ISESD.2016.7886713

Aji, G.K., Hatou, K., & Morimoto, T. (2020). Modeling the dynamic response of plant growth to root zone temperature in hydroponic chili pepper plant using neural networks. Agriculture, 10, 234. https://doi.org/10.3390/agriculture10060234

Akmalovna, A.C. (2022). Characteristics and advantages of soybean benefits in every way. Journal of Ethics and Diversity in International Communication, 1(8), 67–69.

An, N-N., Sun, W-H., Li, B-Z., Wang, Y., Shang, N., Lv, W-Q., Li, D., & Wang, L-J. (2022). Effect of different drying techniques on drying kinetics, nutritional components, antioxidant capacity, physical properties and microstructure of edamame. Food Chemistry (Part B), 373, 131412. https://doi.org/10.1016/j.foodchem.2021.131412

Argo, B.D., & Ubaidillah, U. (2020). Thin-layer drying of cassava chips in multipurpose convective tray dryer: Energy and exergy analyses. Journal of Mechanical Science and Technology, 34(1), 435–442. https://doi.org/10.1007/s12206-019-1242-9

Cabaneros, S.M., Calautit, J.K., & Hughes, B.R. (2019). A review of artificial neural network models for ambient air pollution prediction. Environmental Modelling and Software, 119(June), 285–304. https://doi.org/10.1016/j.envsoft.2019.06.014

Chokphoemphun, S., & Chokphoemphun, S. (2018). Moisture content prediction of paddy drying in a fluidized-bed drier with a vortex flow generator using an artificial neural network. Applied Thermal Engineering, 145, 630–636. https://doi.org/10.1016/j.applthermaleng.2018.09.087

Díaz, A., Dini, C., Viña, S.Z., García, M.A. (2018). Technological properties of sour cassava starches: Effect of fermentation and drying processes. LWT, 93, 116–123. https://doi.org/10.1016/j.lwt.2018.03.029

Guiné, R.P.F. (2019). The use of artificial neural networks (ANN) in food process engineering. ETP International Journal of Food Engineering, 5(1), 15–21. https://doi.org/10.18178/ijfe.5.1.15-21

Hariono, B., Kurnianto, M.F., Bakri, A., Ardiansyah, M., & Wijaya, R. (2018). Improvement of sensory and chemistry quality of fried edamame by freezing. IOP Conference Series: Earth and Environmental Science, 207(1), 012048. https://doi.org/10.1088/1755-1315/207/1/012048

Haryanto, A., Saputra, T.W., Telaumbanua, M., & Gita, A.C. (2020). Application of artificial neural network to predict biodiesel yield from waste frying oil transesterification. Indonesian Journal of Science & Technology, 5(1), 62-74. https://doi.org/10.17509/ijost.v5i1/23099

Kamila, I., Karyadi, J.N.W., & Saputro, A.D. (2019). Drying characteristics of edamame (Glycine max. L. Merill) during freeze drying. IOP Conference Series: Earth and Environmental Science, 355, 012048. https://doi.org/10.1088/1755-1315/355/1/012048

Kaveh, M., Jahanbakhshi, A., Abbaspour-Gilandeh, Y., Taghinezhad, E., & Moghimi, M.B.F. (2018). The effect of ultrasound pre-treatment on quality, drying, and thermodynamic attributes of almond kernel under convective dryer using ANNs and ANFIS network. Journal of Food Process Engineering, 41(7), e12868. https://doi.org/10.1111/jfpe.12868

Liu, W., Zhang, M., Adhikari, B., & Chen, J. (2020). A novel strategy for improving drying efficiency and quality of cream mushroom soup based on microwave pre-gelatinization and infrared freeze-drying. Innovative Food Science and Emerging Technologies, 66, 102516. https://doi.org/10.1016/j.ifset.2020.102516

Ojediran, J.O., Okonkwo, C.E., Adeyi, A.J., Adeyi, O., Olaniran, A.F., George, N.E., Olayanju, A.T. (2020). Drying characteristics of yam slices (Dioscorea rotundata) in a convective hot air dryer: application of ANFIS in the prediction of drying kinetics. Heliyon, 6(3), e03555. https://doi.org/10.1016/j.heliyon.2020.e03555

Yudiastuti, S.O.N., & Wijaya, R. (2021). The chlorine reduction in edamame by water- ozonated minimally process. Journal Research of Social Science, Economics, and Management, 01(3), 269–276. https://doi.org/10.36418/jrssem.v1i3.26

Santos, P., Pitarch, J.L., Vicente, A., Prada, C., & García, A. (2020). Improving operation in an industrial MDF flash dryer through physics-based NMPC. Control Engineering Practice, 94, 104213. https://doi.org/10.1016/j.conengprac.2019. 104213.

Saputra, T.W., Wijayanto, Y., Ristiyana, S., Purnamasari, I, & Muhlison, W. (2022). Non-destructive measurement of rice amylose content based on image processing and artificial neural networks (ANN) model. Jurnal Teknik Pertanian Lampung, 11(2), 231–241. http://dx.doi.org/10.23960/jtep-l.v11i2.231-241

Sarkar, T., Salauddin, M., Hazra, S.K., Choudhury, T., & Chakraborty, R. (2021). Comparative approach of artificial neural network and thin layer modelling for drying kinetics and optimization of rehydration ratio for bael (Aegle marmelos (L) correa) powder production. Economic Computation and Economic Cybernetics Studies and Research, 55(1), 167–184. https://doi.org/10.24818/18423264/ 55.1.21.11

Sarnavi, H. J., Precoppe, M., Garcíaâ€Triñanes, P., Chapuis, A., Tran, T., Bradley, M. S., & Müller, J. (2022). Determining the heat of desorption for cassava products based on data measured by an automated gravimetric moisture sorption system. Journal of the Science of Food and Agriculture. https://doi.org/10.1002/jsfa.12153

Sun, Q., Zhang, M., & Mujumdar, A.S. (2019). Recent developments of artificial intelligence in drying of fresh food: A review. Critical Reviews in Food Science and Nutrition, 59(14), 2258–2275. https://doi.org/10.1080/10408398.2018. 1446900

Wijaya, R. Hariono, B., Saputra, T.W., Rukm, D.L. (2020). Development of plant monitoring systems based on multi-camera image processing techniques on hydroponic system. IOP Conference Series: Earth and Environmental Science, 411, 012002. https://doi.org/10.1088/1755-1315/411/1/012002

Wijaya, R., & Hariono, B. (2020). The mathematical analysis of the drying of cassava grater by using pneumantic (flash) dryer with heat recirculation method. Journal of Physics: Conference Series, 1569, 042061. https://doi.org/10.1088/1742-6596/1569/4/042061

Yudiastuti, S.O.N., Wijaya, R., & Budiati, T. (2021). The effect of ozonation time and contact time of edamame washing on color changes using the continuous type ozone washing method. IOP Conference Series: Earth and Environmental Science, 672, 012066. https://doi.org/10.1088/1755-1315/672/1/012066

Downloads

Published

2022-12-21