Optimization of the Carbonization Parameter of Exhausted Coffee Husk (ECH) as Biochar for Pb and Cu Removal Based on Energy Consumption

Authors

  • Aninda Puari Andalas University
  • Rusnam Rusnam Andalas University
  • Nika Rahma Yanti Andalas University

DOI:

https://doi.org/10.23960/jtep-l.v11i2.242-252

Abstract

Recent studies on agricultural waste as a potential precursor of biochar for heavy metals removal from aqueous solution had not considered exhausted coffee husk (ECH) as the potential one. It is well-known that the carbonization process influences the removal performance of biochar, particularly removal efficiency (RE). However, previous studies rarely considered the energy consumption during the carbonization process. The major objective of this study is to investigate the optimum carbonization parameter on ECH biochar for removal of ion Pb and Cu from economic stand point. The ECH biochar was produced at the different heating temperature (300 − 600°C) and heating time (30 − 120 minutes). In regard to specific cost of bio-sorption, the results showed that 500°C was the optimum heating temperature of ECH biochar for the Pb removal, while 600°C was the optimum one for the Cu removal. Furthermore, the heating time experimental outcomes suggested that the optimum heating time were 30 minutes for Pb removal and 120 minutes done Cu removal.

 

Key words: Biochar, carbonization temperature, carbonization time, exhausted coffee husk, specific energy cost

References

Abbas, S.H., Ismail, I., Moustafa, T., & Sulaymon, A.H. (2014). Biosorption of heavy metals : A Review. Journal of Chemical Science and Technology, 3(4), 74-102.

Ayalew, A. A., & Aragaw, T. A. (2020). Utilization of treated coffee husk as low-cost bio-sorbent for adsorption of methylene blue. Adsorption Science and Technology, 38(5–6), 205–222. https://doi.org/10.1177/0263617420920516

Calvo-Muñoz, E. M., García-Mateos, F. J., Rosas, J. M., Rodríguez-Mirasol, J., & Cordero, T. (2016). Biomass waste carbon materials as adsorbents for CO2 capture under post-combustion conditions. Frontiers in Materials, 3(May), 1–14. https://doi.org/10.3389/fmats.2016.00023

del Castillo, M. D., Fernandez-Gomez, B., Martinez-Saez, N., Iriondo-DeHond, A., & Mesa, M. . (2019). Coffee by-products. In A. Farah (Ed.), Coffee: Production, Quality and Chemistry; Royal Society of Chemistry: Oxfordshire, UK.

Duruibe, J., & Egwurugwu, J. (2007). Heavy metal pollution and human biotoxic effects. International Journal of Physical Sciences, 2(5), 112–118. https://doi.org/10.5897/IJPS.9000289

Ezigbo, V. O., Onukwube, S. I., Oluigbo, I. C., & Nwajiobi, C. C. (2016). Physico - Chemical Properties of Pachystela Brevipes Seed Oil from Anambra State Southeastern Nigeria. International Journal of Engineering Research and Technology (IJERT), 5(5), 151–153. www.ijert.org

Global Agricultural Information Network. (2022). Indonesia’s Coffee Annual Report. https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Coffee Annual_Jakarta_Indonesia_ID2022-0014

Gonçalves, M., Guerreiro, M. C., Ramos, P. H., Oliveira, L. C. A. De, & Sapag, K. (2013). Activated carbon prepared from coffee pulp: Potential adsorbent of organic contaminants in aqueous solution. Water Science and Technology, 68(5), 1085–1090. https://doi.org/10.2166/wst.2013.349

Huang, H., Reddy, N. G., Huang, X., Chen, P., Wang, P., Zhang, Y., Huang, Y., Lin, P., & Garg, A. (2021). Effects of pyrolysis temperature, feedstock type and compaction on water retention of biochar amended soil. Scientific Reports, 11(1), 1–19. https://doi.org/10.1038/s41598-021-86701-5

Inamuddin. (2019). Xanthan gum/titanium dioxide nanocomposite for photocatalytic degradation of methyl orange dye. International Journal of Biological Macromolecules, 121, 1046–1053. https://doi.org/10.1016/j.ijbiomac.2018.10.064

Inglezakis, V. J., Loizidou, M. D., & Grigoropoulou, H. P. (2003). Ion exchange of Pb2+, Cu2+, Fe3+, and Cr3+ on natural clinoptilolite: Selectivity determination and influence of acidity on metal uptake. Journal of Colloid and Interface Science, 261(1), 49–54. https://doi.org/10.1016/S0021-9797(02)00244-8

Iriondo-Dehond, A., Iriondo-Dehond, M., & Del Castillo, M. D. (2020). Applications of compounds from coffee processing by-products. Biomolecules, 10(9), 1–20. https://doi.org/10.3390/biom10091219

Klingel, T., Kremer, J. I., Gottstein, V., & Rezende, T. R. De. (2020). A Review of Co ff ee By-Products Including Leaf. Foods, 9, 1–20. https://doi.org/10.3390/foods9050665

Michalak, I., Chojnacka, K., & Witek-Krowiak, A. (2013). State of the art for the biosorption process - A review. Applied Biochemistry and Biotechnology, 170(6), 1389–1416. https://doi.org/10.1007/s12010-013-0269-0

Mussatto, S. I., Machado, E. M. S., Martins, S., & Teixeira, J. A. (2011). Production, Composition, and Application of Coffee and Its Industrial Residues. Food and Bioprocess Technology, 4(5), 661–672. https://doi.org/10.1007/s11947-011-0565-z

Oliveira, W. E., Franca, A. S., Oliveira, L. S., & Rocha, S. D. (2008). Untreated coffee husks as biosorbents for the removal of heavy metals from aqueous solutions. Journal of Hazardous Materials, 152(3), 1073–1081. https://doi.org/10.1016/j.jhazmat.2007.07.085

Phuengphai, P., Singjanusong, T., Kheangkhun, N., & Wattanakornsiri, A. (2021). Removal of copper(II) from aqueous solution using chemically modified fruit peels as efficient low-cost biosorbents. Water Science and Engineering, 14(4), 286–294. https://doi.org/10.1016/j.wse.2021.08.003

PLN. (n.d.). PL Tarif Adjustment. https://web.pln.co.id/statics/uploads/2022/03/ttl-april-juni.jpg (Retrieved May 31, 2022)

Qasem, N. A. A., Mohammed, R. H., & Lawal, D. U. (2021). Removal of heavy metal ions from wastewater: a comprehensive and critical review. Npj Clean Water, 4(1). https://doi.org/10.1038/s41545-021-00127-0

Rodiguez, M.H., Yperman, J., Carleer, R., Maggen, J., Daddi, D., Gryglewicz, G., Van der Bruggen, B., Falcón Hernández, J., & Otero Calvis, A. (2018). Adsorption of Ni(II) on spent coffee and coffee husk based activated carbon. Journal of Environmental Chemical Engineering, 6(1), 1161–1170. https://doi.org/10.1016/j.jece.2017.12.045

Salem, H.M., Eweida, A., & Fara, A. (2000). Heavy metals in drinking water and their environmental impact on human health. ICEHM2000, Cairo University, Egypt, September, 2000, 542–556.

Salim, R.M., Khan Chowdhury, A. J., Rayathulhan, R., Yunus, K., & Sarkar, M. Z. I. (2016). Biosorption of Pb and Cu from aqueous solution using banana peel powder. Desalination and Water Treatment, 57(1), 303–314. https://doi.org/10.1080/19443994.2015.1091613

Schwarzenbach, R., Escher, B. I., Fenner, K., Hofstetter, T. B., Johnson, C. A., von Gunen, U., & Wehrli, B. (2006). The challenge of micropollutants in aquatic systems. Science, 313(August), 1072–1077. https://doi.org/10.1126/science.1127291

Sharif, T., Ayad, K., & Mseer, H. (2019). Comparison of the experimental results with the Langmuir and Freundlich models for copper removal on limestone adsorbent. Applied Water Science, 9(8), 1–8. https://doi.org/10.1007/s13201-019-1061-2

Smith, C. J., Hopmans, P., & Cook, F. J. (1996). Accumulation of Cr, Pb, Cu, Ni, Zn and Cd in soil following irrigation with treated urban effluent in Australia. Environmental Pollution, 94(3), 317–323. https://doi.org/10.1016/S0269-7491(96)00089-9

Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y., & Yang, Z. (2015). Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, 125, 70–85. https://doi.org/10.1016/j.chemosphere.2014.12.058

Titiladunayo, I. F., McDonald, A. G., & Fapetu, O. P. (2012). Effect of temperature on biochar product yield from selected lignocellulosic biomass in a pyrolysis process. Waste and Biomass Valorization, 3(3), 311–318. https://doi.org/10.1007/s12649-012-9118-6

Wu, H., Chen, R., Du, H., Zhang, J., Shi, L., Qin, Y., Yue, L., & Wang, J. (2018). Synthesis of activated carbon from peanut shell as dye adsorbents for wastewater treatment. Adsorption Science & Technology, 37(1-2), 1–15. https://doi.org/10.1177%2F0263617418807856

Zhou, R., Zhang, M., Zhou, J., & Wang, J. (2019). Optimization of biochar preparation from the stem of Eichhornia crassipes using response surface methodology on adsorption of Cd2+. Scientific Reports, 9(1), 1–17. https://doi.org/10.1038/s41598-019-54105-1

Downloads

Published

2022-06-30

Issue

Section

Articles