Non-Destructive Measurement of Rice Amylose Content Based on Image Processing and Artificial Neural Networks (ANN) Model
DOI:
https://doi.org/10.23960/jtep-l.v11i2.231-241Abstract
The purpose of this study was to develop a method of measuring the amylose content of rice using image processing techniques and an Artificial Neural Network (ANN) model. The rice samples came from six varieties, namely Way Apo Buru, Mapan P05, IR-64, Cibogo, Inpari IR Nutri Zinc, and Inpari 33. The amylose content was measured by laboratory tests and the color intensity was measured based on the RGB (Red, Green, Blue). The ANN model will correlate the RGB color intensity as input with the amylose content as the output. The ANN model used is backpropagation type with 3 input layer nodes and 2 hidden layers with 3-5-5-1 architecture. Variations in the training model used are 27 variations of the activation function. The amount of data used for model training of 30 data while for validation of 12 data. The best ANN model is determined from the high value of accuracy (100%-MAPE) and the value of coefficient of determination (R2). The results showed the best network architecture on the activation function purelin-logsig-tansig. The R2 value on the best training and validation results of 0.98 and 0.66 while the accuracy values for the best training and validation results of 98.15 and 66.82. The validation results show that the developed non-destructive method can be used to quickly and accurately measure the amylose value of rice based on RGB color value. The test results show that the non-destructive method developed cannot be used to measure the amylose content of rice quickly and accurately based on the RGB color intensity, so it needs further development.
Keywords: Amylose, Artificial neural networks, Image processing, Rice
References
Aminah, S. (2019). Analisis kandungan klorin pada beras yang beredar di pasar tradisional Makassar dengan metode argentometri volhard. Prosiding Seminar Nasional Pangan, Teknologi, dan Enterpreneurship “Ekspolrasi Sumberdaya Alam Hayati Indonesia Berbasis Entrepreneurship Di Era Revolusi Industri 4.0â€. Makassar, 09 Februari 2019,171-175. https://doi.org/10.31219/osf.io/v5s62
Andrianyta, H., & Budiastra, I. W. (2010). Efektivitas metode nondestruktif nir-jaringan saraf tiruan dalam menentukan komposisi kimia jagung. Widyariset, 13(2), 15-21. http://dx.doi.org/10.14203/widyariset.13.2.2010,15-21
Ardhiyanti, S. D., Nugraha, U. S., Indrasari, S. D., & Kusbiantoro, B. (2014). Penetapan nilai acuan amilosa beberapa varietas padi menggunakan metode pengikatan Iodin (I): Kalium Iodida (KI) melalui uji banding antarlaboratorium. Widyariset, 17(3), 353-362. http://dx.doi.org/10.14203/widyariset.17.3.2014.353-362
Astiningrum, M., & Abdullah, M. Z. (2020). Identifikasi Kualitas Terung Ungu berdasarkan Warna dan Tekstur menggunakan metode Jaringan Saraf Tiruan. Prosiding Seminar Informatika Aplikatif Polinema, 554-559
Bantacut, T. (2010). Ketahanan pangan berbasis cassava. Jurnal Pangan, 19(1), 3-13. https://doi.org/10.33964/jp.v19i1.100
Bodapati, J. D., & Veeranjaneyulu, N. (2019). Feature extraction and classification using deep convolutional neural networks. Journal of Cyber Security and Mobility, 261-276. https://doi.org/10.13052/2245-1439.825
Brosnan, T., & Sun, D. W. (2004). Improving quality inspection of food products by computer vision––a review. Journal of food engineering, 61(1), 3-16.https://doi.org/10.1016/S0260-8774(03)00183-3
Chen, Y. R., Chao, K., & Kim, M. S. (2002). Machine vision technology for agricultural applications. Computers and electronics in Agriculture, 36(2-3), 173-191. https://doi.org/10.1016/S0168-1699(02)00100-X
Fitriyah, D., Ubaidillah, M., & Oktaviani, F. (2020). Analisis Kandungan Gizi Beras dari Beberapa Galur Padi Transgenik Pac Nagdong/Ir36. ARTERI: Jurnal Ilmu Kesehatan, 1(2), 154-160. https://doi.org/10.37148/arteri.v1i2.51
Goyal, S. (2013). Artificial neural networks (ANNs) in food science–A review. International Journal of Scientific World, 1(2), 19-28. https://doi.org/10.14419/ijsw.v1i2.1151
Hadipernata, M., Somantri, A. S., Hayuningtyas, M., Hidayah, N., & Hoerudin, H. (2020). Sistem Deteksi Cepat Mutu Organoleptik Beras Berbasis Android. Jurnal Aplikasi Teknologi Pangan, 9(4), 167-174. https://doi.org/10.17728/jatp.7434
Haryanto, A. (2020). First Order Kinetics of Biodiesel Synthesis Using Used Frying Oil through Transesterification Reaction. Aceh International Journal of Science and Technology (AIJST), 9(1), 1-11. https://doi.org/10.13170/aijst.9.1.13297
Instan, d. O. N. (2015). Pengaruh kandungan amilosa terhadap karakteristik fisik. Jurnal penelitian pascapanen pertanian| volume, 12(1), 1-10. https://doi.org/10.21082/jpasca.v12n1.2015.1-10
Kaur, G., Din, S., & Brar, A. S. (2014). Design and development of software for the implementation of image processing approach for leaf area measurement. Int. J. Comput. Sci. Inform. Technol, 5, 4793-4797. https://doi.org/10.5120/18729-9963
Lavalle, A., Curia, L., Lavalle, L., Giaveno, A., & Donati, E. (2012). Artificial neural network to predict the growth of Leptospirillum ferrooxidans in 9K defined medium. Int. J. Eng. Res. Appl.(IJERA), 2, 1406-1416.
Lewis, C. D. (1982). Industrial and business forecasting methods: A practical guide to exponential smoothing and curve fitting. Butterworth-Heinemann.
Nangin, D. and Sutrisno, A., 2014. Enzim Amilase Pemecah Pati Mentah Dari Mikroba: Kajian Pustaka. Jurnal Pangan dan Agroindustri, 3(3), 1032-1039
Nuryani. (2013). Potensi subtitusi beras putih dengan beras merah sebagai makanan pokok untuk perlindungan diabetes melitus. Media Gizi Masyarakat Indonesia. 3(3), 157-168.
Pranoto, Y., Marsono, Y., & Marseno, D. W. (2017). Physicochemical properties of rice (Oryza sativa L.) flour and starch of two Indonesian rice varieties differing in amylose content. International Food Research Journal, 24(1), 108.
Rachmat, R. (2012). Model penggilingan padi terpadu untuk meningkatkan nilai tambah. Buletin Teknologi Pasca Panen, 8(2), 99-111.
Rajbhandari, A. M., Anwar, N., & Najam, F. (2017). The use of artificial neural networks (ANN) for preliminary design of high-rise buildings. In 6th ECCOMAS thematic conference on computational methods in structural dynamics and earthquake engineering. Eccomas Proceedia COMPDYN. 10.7712/120117.5696.18560. https://doi.org/10.7712/120117.5696.18560
Sampaio, P. S., Almeida, A. S., & Brites, C. M. (2021). Use of Artificial Neural Network Model for Rice Quality Prediction Based on Grain Physical Parameters. Foods, 10(12), 3016. https://doi.org/10.3390/foods10123016
Saputra, T. W., Waluyo, S., Septiawan, A., & Ristiyana, S. (2020). Pengembangan model prediksi laju pengeringan pada irisan wortel (Daucus carota) berbasis regresi linier berganda (RLB) dan jaringan syaraf tiruan (JST). Jurnal Ilmiah Rekayasa Pertanian Dan Biosistem, 8(2), 209-218. https://doi.org/10.29303/jrpb.v8i2.191
Saranya, P., Karthick, S., & Thulasiyammal, C. (2014). Image Processing Method to Measure the Severity of Fungi Caused Disease in Leaf. International Journal of Advance Research, 2, 95-100.
Sari, A. R., Martono, Y., & Rondonuwu, F. S. (2020). Identifikasi kualitas beras putih (Oryza sativa L.) berdasarkan kandungan amilosa dan amilopektin di pasar tradisional dan “Selepan†Kota Salatiga. Titian Ilmu: Jurnal Ilmiah Multi Sciences, 12(1), 24-30. https://doi.org/10.30599/jti.v12i1.599
Seo, K. K. (2013). A simulation study on an artificial neural network based automatic control system of a plant factory. International Journal of Control and Automation, 6(5), 127-136. https://doi.org/10.14257/ijca.2013.6.5.12
Siregar, S. P., & Wanto, A. (2017). Analysis of artificial neural network accuracy using backpropagation algorithm in predicting process (forecasting). IJISTECH (International Journal of Information System & Technology), 1(1), 34-42. https://doi.org/10.30645/ijistech.v1i1.4
Sugiyono. (2007). Metode Penelitian administrasi. Alfabeta, Bandung
Syamsiah, M., & Masliah, M. (2019). Identifikasi kadar amilosa beras pandanwangi dari tujuh kecamatan di kabupaten cianjur. AGROSCIENCE, 9(2), 130-136.https://doi.org/10.35194/agsci.v9i2.778
Widowati, S., Asni, N., & Nuraeni, F. (2020). Formulasi, Karakterisasi, dan Optimasi Waktu Rehidrasi Produk Nasi Kuning Instan. Jurnal Penelitian Pascapanen Pertanian, 17(2), 95-107. http://dx.doi.org/10.21082/jpasca.v17n2.2020.95-107
Zhao, W., Du, S., & Emery, W. J. (2017). Object-based convolutional neural network for high-resolution imagery classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(7), 3386-3396. 10.1109/JSTARS.2017.2680324
Downloads
Published
Issue
Section
License
- Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International Lice that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Teknik Pertanian Lampung
JTEPL is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.