Classification of Freshness Levels and Prediction of Changes in Evolution of NH3 and H2S Gases from Chicken Meat during Storage at Room Temperature

Authors

  • Pramilih Nastiti Universitas Gadjah Mada
  • Nursigit Bintoro Universitas Gadjah Mada
  • Joko Karyadi Universitas Gadjah Mada
  • Sri Rahayoe Universitas Gadjah Mada
  • Darmawan Nugroho Universitas Gadjah Mada

DOI:

https://doi.org/10.23960/jtep-l.v11i1.90-98

Abstract

Chicken meat has a high nutrient content. However, its quality is easy to be degraded. The degradation is normally characterized by the formation of metabolite gases (NH3 and H2S) as deterioration indicators. Sensors detect phenomena better than human senses. This study aimed to classify meat quality based on gas formation during meat storage. In addition, a kinetics model of gas changes was determined. The gases were detected using a set of equipment consisting of Raspberry Pi and Metal-Oxide-Semiconductor (MOS) gas sensors. Samples were put in a 10 x 10 x 10 (cm) black container. MOS sensors were put inside the box to detect the gases at room temperature for 24 hours, with data collection being recorded every hour. Obtained data were then analyzed using Principle Component Analysis (PCA) for quality classification. The study showed that the quality of chicken meat was classified into three groups with a total variance of more than 95%. PC1 explained 88.2%, and PC2 explained 9.0%. The constant rate of H2S and NH3 changes followed the first-order kinetics with a constant rate of 0.2641 and 0.2925, respectively. The equation for H2S and NH3 changes were Ct=1.70 e0.2641 t and Ct=1.00 e0.2925 t, respectively.

 

Keywords: Chicken meat, Freshness, H2S gas, NH3 gas, Sensor

Author Biography

  • Pramilih Nastiti, Universitas Gadjah Mada
    Byosistem and Agricultural Engineering, Universitas Gadjah Mada

References

Adams, M., & Mos, M. (2005). Food Microbiology. 2nd ed. The Royal Society of Chemistry, Athenaeum Press Ltd, University of Surrey, Guildford. UK.

Alexandrakis, D., Brunton, N. P., Downey, G., & Scannell, A. G. M. (2012). Identification of spoilage marker metabolites in irish chicken breast muscle using HPLC, GC-MS coupled with SPME and traditional chemical techniques. Food and Bioprocess Technology, 5(5): 1917–1923. https://doi.org/10.1007/s11947-010-0500-8

Andre, R. S., Facure, M. H. M., Mercante, L. A., & Correa, D. S. (2022). Electronic nose based on hybrid free-standing nanofibrous mats for meat spoilage monitoring. Sensors and Actuators B: Chemical, 353: 131114. https://doi.org/10.1016/j.snb.2021.131114

Asmara, R. A., Hasanah, Q., Rahutomo, F., Rohadi, E., Siradjuddin, I., Ronilaya, F., & Handayani, A. N. (2019). Chicken meat freshness identification using colors and textures feature. 2018 Joint 7th International Conference on Informatics, Electronics and Vision and 2nd International Conference on Imaging, Vision and Pattern Recognition, ICIEV-IVPR 2018, 93–98. https://doi.org/10.1109/ICIEV.2018.8640992

Asropi, A., Bintoro, N., Nugroho, J., Karyadi, W., Rahayoe, S., Saputro, A. D., Teknik, D., Pertanian, F. T., Mada, U. G., & No, J. F. (2019). Kinetika perubahan sifat fisik dan kadar tanin biji sorgum (Sorghum bicolor L .) selama perendaman. AgriTECH, 39(3): 222–233.

Direktorat Jendral Peternakan dan Kesehatan Hewan. (2021). Statistik Peternakan dan Kesehatan Hewan 2021/ Livestock and Animal Health Statistics 2021 (A. Ramadhany & L. Ermansyah (eds.)). Direktorat Jenderal Peternakan dan Kesehatan HewanKementerian Pertanian RI.

Fu, L., Wang, A., Zhang, H., Zhou, Q., Chen, F., Su, W., Yu, A., Ji, Z., & Liu, Q. (2019). Analysis of chicken breast meat freshness with an electrochemical approach. Journal of Electroanalytical Chemistry, 855(May). https://doi.org/10.1016/j.jelechem.2019.113622

Huff-Lonergan, E., Zhang, W., & Lonergan, S. M. (2010). Biochemistry of postmortem muscle - Lessons on mechanisms of meat tenderization. Meat Science, 86(1): 184–195. https://doi.org/10.1016/j.meatsci.2010.05.004

Kartika, V. S. (2018). Klasifikasi Tingkat Kebusukan Daging Menggunakan Sensor Gas Semikonduktor, Pengolahan Citra GLCM dan Neural Network. [Tesis Master]. Program Magister Bidang Keahlian Teknik Elektronika, Institut Teknologi Sepuluh November, Surabaya.

Kozacinski, L., Fleck, Ž. C., Kozacinski, Z., Filipovic, I., Mitak, M., Bratulic, M., & MikuÅ¡, T. (2012). Evaluation of shelf life of pre-packed cut poultry meat. Veterinarski Arhiv, 82(1): 47–58.

Kusumaningrum, A., Widiyaningrum, F., & Mubarok, I. (2013). Penurunan total bakteri daging ayam dengan perlakuan perendaman infusa daun salam (Syzygium polyanthum). Jurnal MIPA, 36(1): 14–19.

Li, Z., & Suslick, K. S. (2016). Portable Optoelectronic Nose for Monitoring Meat Freshness. ACS Sensors, 1, 1330–1335.

Ling, B., Tang, J., Kong, F., Mitcham, E. J., & Wang, S. (2015). Kinetics of food quality changes during thermal processing: A review. Food and Bioprocess Technology, 8(2): 343–358. https://doi.org/10.1007/s11947-014-1398-3

MikÅ¡-Krajnik, M., Yoon, Y. J., & Yuk, H. G. (2015). Detection of volatile organic compounds as markers of chicken breast spoilage using HS-SPME-GC/MS-FASST. Food Science and Biotechnology, 24(1), 361–372. https://doi.org/10.1007/s10068-015-0048-5

Nitiyacassari, N., Kuswandi, B., & Pangaribowo, D.A. (2021). Label Pintar Untuk Pemonitoran Kesegaran Daging Ayam Pada Kemasan. e-Journal Pustaka Kesehatan, 9(2): 123-128.

Nugroho, D.A., Sutiarso, L., Rahayu, E.S., & Masithoh, R.E. (2020). Utilizing real-time image processing for monitoring bacterial cellulose formation during fermentation. AgriTECH, 40(2): 118–123. https://doi.org/10.22146/agritech.49155

Okarini, I. ., Purnomo, H., Radiati, L. E., & Suaniti, N. (2019). Analisis profil asam lemak daging ayam petelur afkir yang difermentasi secara tradisional bali menggunakan gas chromatography-mass spectrometry (GC-MS). Jurnal Kimia (Journal of Chemistry), 13(1): 44-52

Olivera, D. F., Bambicha, R., Laporte, G., Cárdenas, F. C., & Mestorino, N. (2013). Kinetics of colour and texture changes of beef during storage. Journal of Food Science and Technology, 50(4), 821–825. https://doi.org/10.1007/s13197-012-0885-7

Qiu, S., & Wang, J. (2017). The prediction of food additives in the fruit juice based on electronic nose with chemometrics. Food Chemistry, 230, 208–214.

Rabeler, F., & Feyissa, A.H. (2018). Kinetic modeling of texture and color changes during thermal treatment of chicken breast meat. Food and Bioprocess Technology, 11(8): 1495–1504. https://doi.org/10.1007/s11947-018-2123-4

Vasconcelos, H., Saraiva, C., & de Almeida, J.M.M.M. (2014). Evaluation of the spoilage of raw chicken breast fillets using Fourier Transform Infrared Spectroscopy in tandem with chemometrics. Food and Bioprocess Technology, 7(8): 2330–2341. https://doi.org/10.1007/s11947-014-1277-y

Wettasinghe, M., Vasanthan, T., Temelli, F., & Swallow, K. (2001). Volatile flavour composition of cooked by-product blends of chicken, beef and pork: A quantitative GC-MS investigation. Food Research International, 34(2–3): 149–158.

Downloads

Published

2022-03-31

Issue

Section

Articles