Physical Characteristic of Heat Resistant Chocolate Formulated with Konjac Glucomannan and Xanthan Gum-Based Hydrogel at Various Fat Content during Period of Crystal Growth (Maturation)

Authors

  • Arifin Dwi Saputro Departemen Teknik Pertanian Fakultas Teknologi Pertanian Universitas Gadjah Mada
  • Mira Aprilia Nur Fadilah Universitas Gadjah Mada
  • Samuel Keegen Bangun Universitas Gadjah Mada
  • Sri Rahayoe Universitas Gadjah Mada
  • Joko Nugroho Wahyu Karyadi Universitas Gadjah Mada
  • Arima Diah Setiowati Universitas Gadjah Mada

DOI:

https://doi.org/10.23960/jtep-l.v11i4.658-670

Abstract

Indirect addition of water into chocolate may form secondary sugar networks. This condition creates an increased melting temperature of chocolate. The purpose of this study was to increase the melting point of premium couverture chocolate without addition of fat/oil from other sources.  Chocolate was formulated with coconut/palm sugar as sweetener at various fat levels (32%, 34%, and 36%).  Aside from this, Konjac glucomannan and Xanthan gum-based hydrogel with a concentration of 3%, 5%, and 7% was added. Characterization of chocolate quality parameters with the addition of konjac glucomannan-based hydrogel (CKG) and xanthan gum-based hydrogel (CXG) was carried out. Moisture content, melting point, hardness, particle size and brown color analyses were carried out at intervals of 1, 5, 9 days of maturation (crystal growth period). The results showed that the addition of hydrogel influenced the melting point and hardness.  As the period of crystal growth (maturation) increased, the melting point and hardness of the chocolate also increased.

 

Keywords:   Heat Resistant Chocolate, Hydrogel, Konjac Glucomannan, Palm Sugar, Xanthan Gum

References

Afoakwa, E.O. (2016). Chocolate Science and Technology. 2nd Edition ed. West Sussex: Wiley Blackwell. DOI:10.1002/9781118913758

Afoakwa, E.O., Peterson, A. & Fowler, M. (2007). Factors influencing rheological and textural qualities in chocolate-a Review. Trends in Food Science & Technology , 18(6), 290-298. https://doi.org/10.1016/j.tifs.2007.02.002

Afoakwa, E.O., Peterson, A., Fowler, M. & Vieira, J. (2008a). Particle size distribution and compositional effects on textural properties and appearance of dark chocolates. Journal of Food Engineering, 87(2), 181-190. https://doi.org/10.1016/j.jfoodeng.2007.11.025

Afoakwa, E.O., Peterson, A., Fowler, M. & Vieira, J. (2008b.) Effects of tempering and fat crystallisation behaviour on microstructure, mechanical properties and appearance in dark chocolate systems. Journal of Food Engineering, 89, 128-136. https://doi.org/10.1016/j.jfoodeng.2008.04.021

BPS (Badan Pusat Statistik). (2021). Statistik Kakao Indonesia 2020. Badan Pusat Statistik, Jakarta.

Bangun, S.K. (2021). Pengembangan Proses Pengolahan Cokelat Tahan Panas dengan Penambahan Hidrogel Berbasis Konjac Glucomannan dan Penggunaan Gula Semut.[Undergraduate Thesis]. Yogyakarta: Universitas Gadjah Mada.

Beckett, S. (2008). The Science of Chocolate. Cambridge: RSC Publishing. https://doi.org/10.1039/9781847558053

Beckett, S.T. (2017). Beckett's Industrial Chocolate Manufacture and Use. 5th ed. West Sussex: Wiley Blackwell. DOI:10.1002/9781118923597

Briones, V., Aguilera, J. & Brown, C. (2006). Effect of surface topography on color and gloss of chocolate samples. Journal of Food Engineering, 77(4), 776-783. https://doi.org/10.1016/j.jfoodeng.2005.08.004

Buscato, M.H.M., Hara, L.M., Bonomi, E.C., Calligaris, G.A., Cardoso, L.P., Grimaldi, R., & Kieckbusch, T.G. (2018). Delaying fat bloom formation in dark chocolate by adding sorbitan monostearate or cocoa butter stearin. Food Chemistry, 256, 390-396. https://doi.org/10.1016/j.foodchem.2018.02.127

Devos, N., Reyman, D., & Sanchez-Cortes, S. (2021). Chocolate composition and its crystallization process: A multidisciplinary analysis. Food Chemistry, 342, 128301. https://doi.org/10.1016/j.foodchem.2020.128301

Fadilah, M.A.N. (2021). Pengembangan Proses Pengolahan Cokelat Tahan Panas dengan Penambahan Hidrogel Berbasis Xanthan Gum dan Penggunaan Gula Semut. [Undergraduate Thesis]. Yogyakarta: Universitas Gadjah Mada.

Fadilah, M.A.N., Saputro, A.D., Bangun, S.K., Setiowati, A.D., Rahayoe, S., & Karyadi, J.N.W. (2022). Increasing the melting temperature of chocolate by adding xanthan gum-based hydrogel: A preliminary study. Proceedings of the 2nd International Conference on Smart and Innovative Agriculture (ICoSIA 2021). Atlantis Press International B.V., 174-179. https://doi.org/10.2991/absr.k.220305.026

Francis, F.P., & Chidambaram, R. (2019). Hybrid hydrogel dispersed low fat and heat resistant chocolate. Journal of Food Engineering, 256, 9-17. https://doi.org/10.1016/j.jfoodeng.2019.03.012

Soto, A.S.G., Rabelo, R.S., Vélez-Erazo, E.M., Silveira, P.T.S., Efraim, P., & Hubinger, M.D. (2020). Application of complex chitosan hydrogels added with canola oil in partial substitution of cocoa butter in dark chocolate. Frontiers in Sustainable Food System, 4, 559510. https://doi.org/10.3389/fsufs.2020.559510

Jin, J., Akoh, C. & Wang, X. (2021). StOSt-rich fats in the manufacture of heat-stable chocolates and their potential impacts on fat bloom behaviors. Trends in Food Science & Technology, 118, 418-430. https://doi.org/10.1016/j.tifs.2021.10.005

Karaman, S., Kesler, Y., Goksel, M., Dogan, M., & Kayacier, A. (2014). Rheological and some physicochemical properties of selected hydrocolloids and their interactions with guar gum: Characterization using principal component analysis and viscous synergism index. International Journal of Food Properties, 17(8), 1655-1667. https://doi.org/10.1080/10942912.2012.675612

Killian, L.A., & Coupland, J.N. (2012). Manufacture and application of water-in-oil emulsions to induce the aggregation of sucrose crystal in oil: A model for melt-resistant chocolate. Food Bioscience, 7, 124-131. DOI 10.1007/s11483-012-9249-0

Koroskenyi, B., & McCarthy, S. (2001). Synthesis of acetylated konjac glucomannan and effect of degree of acetylation on water absorbency. Biomacromolecules, 2(3), 824-826. https://doi.org/10.1021/bm010014c

Kurniasari, J. et al., 2019. The use of oven as a device to temper molten dark chocolate. IOP Conference Series: Earth and Environmental Science, 355, 012042. DOI 10.1088/1755-1315/355/1/012042

Lillah, A.A., Pasha, I., Murtaza, G., & Ali, M. (2017). Improving heat stability along with quality of compound dark chocolate by adding optimized cocoa butter substitute (hydrogenation palm kernel stearin) emulsion. LWT-Food Science and Technology, 80, 531-536. https://doi.org/10.1016/j.lwt.2017.02.042

Mortensen, A., Aguilar, F., Crebelli, R., Domenico, A.D., Frutos, M.J., Galtier, P., Gott, D., Gundert-Remy, U., Lambré, C., Leblanc, J-C., Lindtner, O., Moldeus, P., Mosesso, P., Oskarsson, A., Parent-Massin, D., Stankovic, I., Waalkens-Berendsen, I., Woutersen, R.A., Wright, M., Younes, M., Brimer, L., Peters, P., Wiesner, J., Christodoulidou, A., Lodi, F., Tard, A., & Dusemund, B. (2017). Reâ€evaluation of konjac gum (E 425 i) and konjac glucomannan (E 425 ii) as food additives. EFSA Journal, 15(6), e04864. https://doi.org/10.2903/j.efsa.2017.4864

Mortensen, A., Aguilar, F., Crebelli, R., Domenico, A.D., Frutos, M.J., Galtier, P., Gott, D., Gundert-Remy, U., Lambré, C., Leblanc, J-C., Lindtner, O., Moldeus, P., Mosesso, P., Oskarsson, A., Parent-Massin, D., Stankovic, I., Waalkens-Berendsen, I., Woutersen, R.A., Wright, M., Younes, M., Brimer, L., Peters, P., Wiesner, J., Christodoulidou, A., Lodi, F., Tard, A., & Dusemund, B. (2017). Reâ€evaluation of xanthan gum (E 415) as a food additive. EFSA Journal, 15(7), e04909. https://doi.org/10.2903/j.efsa.2017.4864

Nafingah, R., Kurniasari1, J., Cahyani, A., Harmayani, E., & Saputro, A.D. (2019). Investigating the impact of Palm Sap Sugar proportion and fat content on heat stability of Milk. IOP Conference Series: Earth and Environmental Science, 355, 012043. https://doi.org/10.1088/1755-1315/355/1/012043

Norton, J., & Fryer, P. (2012). Investigation of changes in formulation and processing parameters on the physical properties of cocoa butter emulsions. Journal of Food Engineering, 113(2), 329-336. https://doi.org/10.1016/j.jfoodeng.2012.05.025

Ogunwulu, S.O., & Jayeola, C.O. (2006). Development of non-conventional thermo-resistant chocolate for the tropics. British Food Journal, 108(6), 451-455. doi/10.1108/00070700610668423

Prawira, R.M., & Barringer, S.A. (2009). Effect of conching time and ingredients on preference of milk chocolate. Journal of Food Processing and Preservation, 33(5), 571-589. https://doi.org/10.1111/j.1745-4549.2008.00272.x

Puscas, A., Muresan, V., Socaciu, C., & Muste, S. (2020). Oleogels in food: A review of current and potential applications. Foods, 9(1), 1-27. DOI: 10.3390/foods9010070

Saputro, A.D., Van de Walle, D., Aidoo, R.P., Mensah, M.A., Delbaere, C., de Clercq, N., Van Durme, J., & Dewettinck, K. (2017). Quality attributes of dark chocolates formulated with palm sap-based sugar as nutritious and natural alternative sweetener. Eur. Food Res. Technol., 243, 177-191. DOI: 10.1007/s00217-016-2734-9

Saputro, A.D., Van de Walle, D., & Dewettinck, K. (2019). Palm sap sugar: A review. Sugar Tech, 21, 862-867. DOI: 10.1007/s12355-019-00743-8

Saputro, A.D., Van de Walle, D., & Dewettinck, K. (2020). Physicochemical properties of coarse palm sap sugar as natural alternative sweetener. Food Bioscience, 38, 100780. https://doi.org/10.1016/j.fbio.2020.100780

Saputro, A.D., Van de Walle, D., Kadivar, S., Mensah, M.A., Van Durme, J., & Dewettinck, K. (2017a). Feasibility of small-scale production system approach for palm sugar sweetened dark chocolate. European Food Research and Technology, 243, 955-967. https://doi.org/10.1007/s00217-016-2812-z

Saputro, A.D., Van de Walle, D., Kadivar, S., Sintang, M.D.B., Van der Meeren, P., & Dewettinck, K. (2017b). Investigating the rheological, microstructural and textural properties of chocolates sweetened with palm sap-based sugar by partial replacement. European Food Research and Technology, 243(10), 1729-1738. DOI: 10.1007/s00217-017-2877-3

Saputro, A.D., Van de Walle, D., Caiquo, B.A., Hinneh, M., Kluczykoff, M., & Dewettincka, K. (2019). Rheological behaviour and microstructural properties of dark chocolate produced by combination of a ball mill and a liquefier device as small-scale chocolate production system. LWT-Food Science and Technology, 100, 10-19. https://doi.org/10.1016/j.lwt.2018.10.039

Selvasekaran, P., & Chidambaram, F. (2021). Advances in formulation for the production of low-fat, fat-free, low-sugar, and sugar-free chocolates: An overview of the past decade. Trends in Food Science & Technology, 113, 315-334. https://doi.org/10.1016/j.tifs.2021.05.008

Skelhon, T., Olsson, P., Morgan, A., & Bon, S. (2013). High internal phase agar hydrogel dispersions in cocoa butter and chocolate as a route towards reducing fat content. Food and Function, 4(9), 1314. DOI: 10.1039/c3fo60122f

Stortz, T.A., & Marangoni, A.G. (2011). Heat resistant chocolate. Trends Food Sci. Technol, 22, 201-204. https://doi.org/10.1016/j.tifs.2011.02.001

Suri, T., & Basu, S. (2021). Heat resistant chocolate development for subtropical and tropical climates: A review. Critical Review in Food Science and Nutrition, 62(20), 5603–5622. https://doi.org/10.1080/10408398.2021.1888690

Downloads

Published

2022-12-25