The Effect of Light Distance on Aeroponic Potato Seed Production in The Tropical High Land

Authors

  • Eni Sumarni Program Studi Teknik Pertanian. Jurusan Teknologi Pertanian. Universitas Jenderal Soedirman. Purwokerto.
  • Loekas Soesanto Jurusan Agroteknologi. Universitas Jenderal Soedirman. Purwokerto.
  • Whidiatmoko Herry Purnomo Jurusan Teknik Elektro. Fakultas Teknik. Universitas Jenderal Soedirman
  • Priswanto Priswanto Jurusan Teknik Elektro. Fakultas Teknik. Universitas Jenderal Soedirman

DOI:

https://doi.org/10.23960/jtep-l.v11i1.99-109

Abstract

Aeroponic potato seed production in the highlands during foggy weather is an obstacle in increasing the number of tubers. Research that has been done previously is the addition of artificial light to support the growth and yield of potato seeds in the highlands. Nevertheless, from these results, there were still some plants that did not have optimal growth. It was suspected that the lamp height affects the growth and yield of aeroponic potato plants. The purpose of this study was to determine the effect of lamp distance on artificial lighting on the growth and yield of aeroponic potatoes. The factors that were tried were the height of the lamp from the aeroponic box 110 cm, 120 cm, and 130 cm. The lamps used: 18 Watt red blue LED (RB) and 10 Watt white fluorescent lamp. The design used was a completely randomized design. Growth observation data and results were analyzed by F test followed by Duncan's Multiple Distance Test (DMRT) 5%. The results showed that the combination of RB LED lamps with a height of 110 cm produced the highest number of bulbs of 31,7 per plant. The weight of aeroponic potato tubers in the highlands with the highest yield was obtained from a combination of 110 cm (29,3 g) RB LED lights.

 

Keywords:  Aartificial lighting, hydroponics, granola, greenhouse, tropical Indonesia

References

Chen, X. L., Guo, W. Z., Xue, X. Z., Wang, L. C. & Qiao, X. J. (2014). Growth and quality responses of ‘Green Oak Leaf’lettuce as affected by monochromic or mixed radiation provided by fluorescent lamp (FL) and light-emitting diode (LED). Scientia Horticulturae. 172:168-175.

Demers, D.A., M. Dorais, C.H. Wien, & A. Gosselin. (1998). Effects of supplemental light duration on greenhouse tomato (Lycopersicon esculentum Mill.) plants and fruit yields. Sci. Hortic. 74, 295-306.

Dorais, S., S. Yelle, & Gosselina. (1996). Influence of extended photoperiod on photosynthate partitioning and export in tomato and pepper plants. New Zeal. J. Crop Hort. 24, 29-37.

Fan, X. X., Z.G. Xu, X.Y. Liu, C.M. Tang, L.W. Wang, & X.L. Han. (2013). Effects of light intensity on the growth and leaf development of young tomato plants grown under under a combination of red and blue light. Scientia Horticulturae,153: 50–55.

Hadi, P.U. & S.H. Susilowati. (2010). Prospek masalah dan strategi pemenuhan kebutuhan pangan pokok. Seminar Nasional Era Baru Pembangunan Pertanian: Strategi Mengatasi Masalah Pangan, Bio-Energi dan Perubahan Iklim 25:35-57.

Hernandez, R., & C. Kubota. (2016). Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environmental and Experimental Botany,121: 66–74.

Hernandez, R., T. Eguchi, M. Deveci, & C. Kubota. (2016). Tomato seedling physiological responses under different percentages of blue and red photon flux ratios using LEDs and cool white fluorescent lamps. Scientia Horticulturae, 213: 270–280.

Hopkins, W. G. (1999). Introduction to Plant Physiology. 2nd ed. New York, NY: John Wiley & Sons, Inc. pp. 512, https://trove.nla.gov.au/work/8827904.

Jao, R. C., & W. Fang. (2004). Growth of potato plantlets in vitro is different when provided concurrent versus alternating blue and red light photoperiods. HortScience, 39(2): 380–382.

Kotak, S, Larkindale, J, Lee, U, Do ring, PvK, Vierling, E & Scharf, K.D. (2007). Complexity of the heat stress response in plants. Curr. Opin. Plant Biol., vol. 10, pp. 310-6.

Lefsrud, M. G., Kopsell, D. A. & Sams, C. E. (2008). Irradiance from distinct wavelength light-emitting diodes affect secondary metabolites in kale. HortScience. 43:2243-2244.

Li, H.M., C.M. Tang, & Z.G. Xu. (2013). The effects of different light qualities on rapeseed (Brassicanapus L.) plantlet growth and morphogenesis in vitro. Scientia Horticulturae,150: 117–124.

Lindawati, Y. (2015). Pengaruh Lama Penyinaran Lampu LED dan Lampu Neon terhadap Pertumbuhan dan Hasil Tanaman Pakcoy (Brassica rapa L) dengan Hidroponik Sistem Sumbu (Wick System). Skripsi. Fakultas Pertanian. Universitas Lampung.

Lukitasari, M. (2012). Pengaruh Intensitas cahaya Matahari Terhadap Pertumbuhan Tanaman Kedelai (Glicine max). PKM-AI IKIP PGRI. Madiun.

Menard, C., M. Dorais, T. Hovi, & A. Gosselin. (2006). Development and physiological responses of tomato and cucumber to additional blue light. Acta Hort. 711, 291-296.

Rajesh, Y. & Y. Nita. (2016). Need anda necessity of greenhouse effect-A reviewe. European Journal of Biomedical AND Pharmaceutical sciences. vol. 3, pp. 167-175, 2016.

Roumeliotis E, Visser R G, & Bachem C W. (2012). A crosstalk of auxin and GA during tuber development. Plant Signaling & Behavior, 7 (10): 1360–1363.

Sumarni, E., H. Suhardiyanto, K.B. Seminar, & S.K. Saptomo. (2013). Aplikasi Pendinginan Zona Perakaran (Root Zone Cooling) pada Produksi Benih Kentang Menggunakan Aeroponik di Dataran Rendah Tropika Basah. Jurnal Agronomi Indonesia Terakreditasi A. Vol. 41. No. 2. Agustus.

Sumarni, E., N. Farid, L. Soesanto, Darjanto, & Ardiansyah. (2019a). Effect of Electrical Conductivity (EC) in the Nutrition Solution on Aeroponic Potato Seed Production with Root Zone Cooling Application in Tropical Lowland, Indonesia," AgricEngInt: CIGR Journal. Vol.21.No2 : 70-77.

Sumarni, E., L. Soesanto, A. Widhiatmoko, & Priswanto. (2019b). The effect of combination lighting of LED and neon light on the growth and yield of potato seeds on the production of Aeroponic seeds in the tropical highland. Agric Eng Int: CIGR Journal Vol.21.No.4 :115-120.

Susilowati, E., S. Triyono, & C. Sugianti. (2015). The effect of fluorescent lamp distance on plant growth kailan (Brassica oleraceae) with wick system hydroponic in the room (Indoor). Jurnal Teknik Pertanian LampungVol. 4, No. 4: 293-304.

Taiz, L. & E. Zeiger. (1991). Plant Physiology.1st ed., 179-264. Benjamin/Cummings Publishing Co New York.

Teo C J, Takahashi K, Shimizu K, Shimamoto K, Taoka K I. Shimamoto, & Taoka K. (2017). Potato tuber induction is regulated by interactions between components of a tuberigen complex. Plant & Cell Physiology,58(2): 365–374.

Terashima, I., Fujita, T., Inoue, T., Chow, W. S. & Oguchi, R. (2009). Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. Plant and cell physiology. 50:684-697.

Tian, Fe. (2017). Study and optimization of lighting systems for plant growth in a controlled environment. Chemical and Process Engineering. Université Paul Sabatier. Theses. Pp : 1-153.

Wahid, A., Gelani, S., Ashraf, M & Foolad, M.R. (2007). Heat tolerance in plants: an overview. Environ. Exp. Bot., vol. 61, pp.199-223.

Winarto, Y.T., K. Stigter, B Dwisatrio, M. Nurhaga, & A. Bowolaksono. (2013). Agrometeorological learning increasing farmers’ knowledge in coping with climate change and unusual risks. Southeast Asian Studies 2(2):323-349.

Wiyono, S. (2007). Perubahan iklim dan ledakan hama penyakit tanaman. Makalah disampaikan pada Seminar Sehari tentang Keanekaragaman Hayati di Tengah Perubahan Iklim: Tantangan Masa Depan Indonesia. Jakarta 28 Juni 2007.

Downloads

Published

2022-03-31

Issue

Section

Articles