EVALUASI DATA CLIMATE HAZARDS GROUP INFRARED PRECIPITATION WITH STATION (CHIRPS) DENGAN DATA PEMBANDING AUTOMATIC WEATHER STATIONS (AWS) DALAM MENGESTIMASI CURAH HUJAN HARIAN DI PROVINSI PAPUA BARAT

Authors

DOI:

https://doi.org/10.23960/jtep-l.v10i1.64-72

Abstract

This research aims to evaluate the CHIRPS data in estimating daily rainfall in West Papua compared with automatic weather stations (AWS) data recording. The data used in this research are daily CHIRPS data and AWS daily data recording 1996 to 2020 from AWS Rendani−Manokwari, AWS Jefman−Raja Ampat, AWS Torea−Fakfak, and AWS Kaimana−Kaimana. CHIRPS data were evaluated using the Point to Pixel method based on numerical and categorical parameters i.e., root mean square error (RMSE), mean error (ME), mean absolute error (MAE), Pearson correlation (r), probability of detection (POD), critical success index (CSI), and T-test. The research showed that CHIRPS had a significant difference to AWS data in estimating daily rainfall in West Papua based on a T-test. However CHIRPS has a moderate accuracy in estimating daily rainfall in West Papua with RMSE = 8.59 mm, ME=2.75 mm, and MAE = 5.15 mm and had a moderate positive correlation with AWS data with r= 0.43. Besides, CHIRPS has good accuracy in detecting rain events in West Papua indicated by a POD = 0.72 and CSI = 0.43. Therefore, CHIRPS data can be used as an alternative solution for providing rainfall data in West Papua. 

 

Keywords:  satellite observation, rainfall predictor, point to pixel

 

References

Badan Pusat Statistik. 2020. Provinsi Papua Barat Dalam Angka 2020. Badan Pusat Statistik.

BMKG. 2018. Metadata Stasiun. https://dataonline.bmkg.go.id/mcstation_metadata

Chattopadhyay, N., Malathi, K., Tidke, N., Attri, S. D., & Ray, K. (2020). Monitoring agricultural drought using combined drought index in India. Journal of Earth System Science, 129(1), 16. https://doi.org/10.1007/s12040-020-01417-w.

Climate Hazards Center. 2020. CHC Early Estimates. https://www.chc.ucsb.edu/monitoring/early-estimates.

Dinku, T., Funk, C., Peterson, P., Maidment, R., Tadesse, T., Gadain, H., & Ceccato, P. 2018. Validation of the CHIRPS Satellite Rainfall Estimates over Eastern of Africa : Validation of the CHIRPS Satellite Rainfall Estimates Over Eastern. Quarterly Journal of the Royal Meteorological Society, 144(April). https://doi.org/10.1002/qj.3244

Dirjen Sumber Daya Air. 2013. Standar Perencanaan Irigasi KP-02: Kriteria Perencanaan Bagian Bangunan Utama (2nd ed.). Kementerian Pekerjaan Umum.

Ebrahimpour, M., Rahimi, J., Nikkhah, A., & Bazrafshan, J. 2014. Monitoring Agricultural Drought Using the Standardized Effective Precipitation Index. Journal of Irrigation and Drainage Engineering, 141(1), 1–9. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000771.

Faisol, A., Indarto, I., Novita, E., & Budiyono, B. 2020. Komparasi Antara Climate Hazards Group Infrared Precipitation With Stations (CHIRPS) dan Global Precipitation Measurement (GPM) Dalam Membangkitkan Informasi Curah Hujan Harian di Provinsi Jawa Timur. Jurnal Teknologi Pertanian Andalas, 24(2), 148–156.

Funk, C. C., Peterson, P. J., Landsfeld, M. F., Pedreros, D. H., Verdin, J. P., Rowland, J. D., Romero, B. E., Husak, G. J., Michaelsen, J. C., & Verdin, A. P. 2014. A Quasi-Global Precipitation Time Series for Drought Monitoring (1st ed.).

Gebrechorkos, S. H., Hülsmann, S., & Bernhofer, C. 2018. Evaluation of Multiple Climate Data Sources for Managing Environmental Resources in East Africa. Hydrology and Earth System Sciences, 22, 4547–4564. https://doi.org/https://doi.org/10.5194/hess-22-4547-2018.

Hydrology Subcommittee. 1982. Guidelines for Determining Flood Flow Frequency : Bulletin 17B.

International Research Institute for Climate and Society. 2015. Indonesia CPT Precipitation Forecast.https://iridl.ldeo.columbia.edu/maproom/Agriculture/Forecast/Indonesia_Precip_CHIRPS.html#tabs-2

LAPAN. 2020. Curah Hujan. https://spbn.pusfatja.lapan.go.id/maps/7122

Lelis, L. C., Bosquilia, R. W. D., & Duarte, S. N. 2018. Assessment of Precipitation Data Generated by GPM and TRMM Satellites. Revista Brasileira de Meteorologia, 33(1), 153–163.

Machiwal, D., & Jha, M. K. 2012. Hydrologic Time Series Analysis: Theory and Practice (1st ed.). Springer International Publishing.

Meyer, H., Drönner, J., & Nauss, T. 2017. Satellite-based High-Resolution Mapping of Rainfall over Southern Africa. Atmospheric Measurement Techniques, 10, 2009–2019.

National Center for Atmospheric Research Staff. 2020. The Climate Data Guide: Precipitation Data Sets: Overview & Comparison table. Agustus. https://climatedataguide.ucar.edu/climate-data/precipitation-data-sets-overview-comparison-table.

Nuryadi, Astuti, T. D., Utami, E. S., & Budiantara, M. 2017. Dasar-Dasar Statistik Penelitian (1st ed.). Sibuku Media.

Omranian, E., Sharif, H. O., & Tvakoly, A. A. 2018. How Well Can Global Precipitation Measurement ( GPM ) Capture Hurricanes ? Case Study : Hurricane Harvey. Remote Sensing, 14. https://doi.org/10.3390/rs10071150.

Prakash, S., Kumar, M. R. R., Mathew, S., & Venkatesan, R. 2017. How Accurate are Satellite Estimates of Precipitation over The North Indian Ocean ? Theoretical and Applied Climatology, 9 p. https://doi.org/https://doi.org/10.1007/s00704-017-2287-2.

Ritung, S., Nugroho, K., Mulyani, A., & Suryani, E. 2011. Petunjuk Teknis Evaluasi Lahan untuk Komoditas Pertanian (2nd ed.). Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian.

Saeidizand, R., Sabetghadam, S., Tarnavsky, E., & Pierleoni, A. 2018. Evaluation of CHIRPS Rainfall Estimates over Iran. Advances in Remote Sensing Pf Rainfall and Snowfall, 144(May), 282–291. https://doi.org/10.1002/qj.3342.

Sungmin, O., Foelsche, U., Kirchengast, G., Fuchsberger, J., Tan, J., & Petersen, W. A. 2017. Evaluation of GPM IMERG Early , Late , and Final rainfall estimates using WegenerNet gauge data in southeastern Austria. Hydrology and Earth System Science, 21, 6559–6572.

Trejo, F. J. P., Barbosa, H. A., Peñaloza-Murillo, M. A., Moreno, M. A., & Farías, A. 2016. Intercomparison of Improved Satellite Rainfall Estimation with CHIRPS Gridded Product and Rain Gauge Data over Venezuela. Atmósfera, 29(4), 323–342. https://doi.org/10.20937/ATM.2016.29.04.04.

Wang, Z., Zhong, R., Lai, C., & Chen, J. 2017. Evaluation of The GPM IMERG Satellite-based Precipitation Products and The Hydrological Utility. Atmospheric Research, 196(June), 151–163. https://doi.org/10.1016/j.atmosres.2017.06.020.

Wei, G., Haishen, L., Crow, W. T., Zhu, Y., Wang, J., & Su, J. 2018. TMPA Precipitation Products with Gauged Rainfall over Mainland China. Advances in Meteorology, 2018(4), 18 p.

World Meteorological Organization. 2010. Commission for Instruments and Methods of Observation (WMO-No. 1064). In Fifteenth session - Abridged final report with resolutions and recommendations (Issue 1064). http://www.wmo.int/pages/prog/www/CIMO/CIMO15-WMO1064/1064_en.pdf

Downloads

Published

2021-03-25

Issue

Section

Articles