Sel Bahan Bakar Berbasis Mikroba-Tanaman (P-MFC) Sebagai Sumber Energi Listrik; Prinsip Kerja, Variasi Desain, Potensi dan Tantangan
DOI:
https://doi.org/10.23960/jtep-l.v9i2.112-121Abstract
Abstract
Plant Microbial Fuel Cell or known as P-MFC, is an emerging technology to produce electricity. P-MFC is projected as a possible solution in developing an alternative source of electricity that is highly available and sustainable. P-MFC is not releasing pollution during the running time. Hence, the only side product of this technology is water. The electricity could be harvested in situ, or directly on the reactor site location. P-MFC shows unique symbiosis between the plant and the microbe, which live around the plant roots area. Naturally, the microbe will eventually degrade the organic matter and convert it to electricity with the support of a particular P-MFC design. The P-MFC design for research purposes has already been various compare to the initial introduction. Besides, the plant type occupied has been diverse as well. This article reviews four main parts of P-MFC technology. Firstly, an explanation of fundamentals processes in P-MFC and its plant. Secondly, about the P-MFC design variations and its power output. Thirdly, about P-MFC power potential in Indonesia. And lastly, about the challenge of P-MFC application.
Keywords: bioenergy, P-MFC, fuel cell, microbe, bioelectricity
Abstrak
Sel Bahan Bakar Berbasis Mikroba-Tanaman atau lebih dikenal dengan Plant-Microbial Fuel Cell (P-MFC) adalah teknologi baru terbarukan untuk memproduksi energi berupa listik. P-MFC menjadi solusi potensial dalam pengembangan energi listrik alternatif yang mudah didapatkan dan ramah lingkungan. P-MFC tidak menimbulkan polusi saat digunakan karena hasil samping satu-satunya adalah air. Listrik yang dihasilkan dapat dipanen langsung dilokasi peletakkan reaktor P-MFC. Lebih lanjut, teknologi P-MFC memanfaatkan keberadaan mikroba yang hidup di sekitar area perakaran tanaman. Secara alamiah mikroba akan mendegradasi bahan organik dan kemudian mengubahnya menjadi listrik dengan dukungan desain P-MFC tertentu. Desain P-MFC sudah sangat berkembang sejak awal mula diperkenalkan. Selain itu, jenis tanaman yang digunakan juga semakin beragam. Pada tulisan ini, akan diulas empat hal penting mengenai PMFC. Pertama-tama, proses dasar pada teknologi P-MFC dan jenis tanaman P-MFC. Kedua mengenai variasi desain P-MFC dan efektifitasnya dalam menghasilkan listrik. Ketiga, tentang potensi P-MFC di Indonesia. Dan terakhir, mengenai tantangan utama dalam aplikasi P-MFC.
Kata kunci: energi terbarukan, P-MFC, sel bahan bakar, mikroba, listrik-bio
References
Bombelli, P., Iyer, D. M. R., Covshoff, S., McCormick, A. J., Yunus, K., Hibberd, J. M., . . . Howe, C. J. (2013). Comparison of power output by rice (Oryza sativa) and an associated weed (Echinochloa glabrescens) in vascular plant bio-photovoltaic (VP-BPV) systems. Applied Microbiology and Biotechnology, 97(1), 429-438.
BPS. (2020). Luas Panen, Produksi, dan Produktivitas Padi Menurut Provinsi, 2018-2019. Retrieved from https://www.bps.go.id/dynamictable/2019/04/15/1608/luas-panen-produksi-dan-produktivitas-padi-menurut-provinsi-2018.html
Cheng, & Gershenson. (2007). Carbon fluxes in the rhizosphere The Rhizosphere (pp. 31-56): Elsevier.
Cheng, & Liu. (2006). Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochemistry communications, 8(3), 489-494.
Grayston, S. J., & Vaughan, D. (1997). Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Applied Soil Ecology, 5(1), 29-56. doi:https://doi.org/10.1016/S0929-1393(96)00126-6
Helder. (2012a). The flat-plate plant-microbial fuel cell: the effect of a new design on internal resistances. Biotechnology for biofuels, 5(1), 70.
Helder. (2012b). New plant-growth medium for increased power output of the plant-microbial fuel cell. Bioresource Technology, 104, 417-423.
Helder, M. (2012). Phd Dissertation, Design Criteria for PMFC. Wageningen.
Helder, M., Strik, D., Hamelers, H., Kuhn, A., Blok, C., & Buisman, C. (2010). Concurrent bio-electricity and biomass production in three Plant-Microbial Fuel Cells using Spartina anglica, Arundinella anomala and Arundo donax. Bioresource Technology, 101(10), 3541-3547.
Husaini, M. (2012). Pengkajian Daya Saing dan Dampak Kebijakan Terhadap Usahatani Padi dan Jeruk Lahan Gambut Kabupaten Barito Kuala Kalimantan Selatan. AGRIDES: Jurnal Agribisnis Perdesaan, 2(2), 9243.
Johnson, M. P. (2016). Photosynthesis. Essays in biochemistry, 60(3), 255-273. doi:10.1042/EBC2016001
Kaku, N. (2008). Plant/microbe cooperation for electricity generation in a rice paddy field. Applied Microbiology and Biotechnology, 79(1), 43-49.
Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., . . . Rabaey, K. (2006). Microbial Fuel Cells: Methodology and Technology. Environmental Science & Technology, 40(17), 5181-5192. doi:10.1021/es0605016
Lu, l. (2015). Microbial community structure accompanied with electricity production in a constructed wetland plant microbial fuel cell. Bioresource Technology, 195, 115-121.
Neori, A. (2000). Bioactive chemicals and biological—biochemical activities and their functions in rhizospheres of wetland plants. The Botanical Review, 66(3), 350-378.
Nitisoravut, R., & Regmi, R. (2017). Plant microbial fuel cells: A promising biosystems engineering. Renewable and Sustainable Energy Reviews, 76, 81-89. doi:http://doi.org/10.1016/j.rser.2017.03.064
OEI. (2019). Outlook Energi Indonesia 2019. Retrieved from https://www.esdm.go.id/assets/media/content/content-outlook-energi-indonesia-2019-bahasa-indonesia.pdf
Oon, Y.-L., Ong, S.-A., Ho, L.-N., Wong, Y.-S., Oon, Y.-S., Lehl, H. K., & Thung, W.-E. (2015). Hybrid system up-flow constructed wetland integrated with microbial fuel cell for simultaneous wastewater treatment and electricity generation. Bioresource Technology, 186, 270-275.
Paterson, E. (2003). Importance of rhizodeposition in the coupling of plant and microbial productivity. European Journal of Soil Science, 54(4), 741-750. doi:10.1046/j.1351-0754.2003.0557.x
Pimentel, D. (2014). Implications for the Economy and Environment of Alternatives to Fossil-Fuel Energy. In J. E. Gates, D. L. Trauger, & B. Czech (Eds.), Peak Oil, Economic Growth, and Wildlife Conservation (pp. 63-82). New York, NY: Springer New York
Roger, P.-A., & Watanabe, I. (1984). Algae and aquatic weeds as source of organic matter and plant nutrients for wetland rice. Organic matter and rice, 147-168.
Schlesinger, W. H., & Bernhardt, E. S. (2013). Biogeochemistry: an analysis of global change: Academic press.
Strik, D. P. (2008a). Green electricity production with living plants and bacteria in a fuel cell. International Journal of Energy Research, 32(9), 870-876. doi:10.1002/er.1397
Strik, D. P. (2008b). Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC). Applied Microbiology and Biotechnology, 81(4), 659-668. doi:10.1007/s00253-008-1679-8
Strik, D. P., Timmers, R. A., Helder, M., Steinbusch, K. J., Hamelers, H. V., & Buisman, C. J. (2011). Microbial solar cells: applying photosynthetic and electrochemically active organisms. Trends in biotechnology, 29(1), 41-49.
Sudirjo, E. (2020). Plant microbial fuel cell in paddy field: A power source for rural area. Wageningen University.
Taiz, L., & Zeiger, E. (2006). Plant Physiology Sinauer Associates. Inc., Sunderland, MA.
Wang, C., & Guo, L. (2012). Systematic comparison of C3 and C4 plants based on metabolic network analysis. Paper presented at the BMC systems biology.
Wetser, K. (2016). PhD Dissertation. Electricity from wetlands: Technology assessment of the tubular Plant Microbial Fuel Cell with an integrated biocathode. Wageningen.
Wetser, K. (2017). Electricity from wetlands: Tubular plant microbial fuels with silicone gas-diffusion biocathodes. Applied Energy, 185, Part 1, 642-649. doi:http://doi.org/10.1016/j.apenergy.2016.10.122
Wetser, K., & Liu, J. (2015). Plant microbial fuel cell applied in wetlands: Spatial, temporal and potential electricity generation of Spartina anglica salt marshes and Phragmites australis peat soils. Biomass and Bioenergy, 83, 543-550. doi:http://dx.doi.org/10.1016/j.biombioe.2015.11.006
Downloads
Published
Issue
Section
License
- Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International Lice that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Teknik Pertanian Lampung
JTEPL is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.